Skip to main content
Log in

Breastfeeding improves dynamic reorganization of functional connectivity in preterm infants: a temporal brain network study

  • Original Article
  • Published:
Medical & Biological Engineering & Computing Aims and scope Submit manuscript

Abstract

Substantial evidences have shown the benefits of breastfeeding to infants in terms of better nutrition and neurodevelopmental outcome. However, the relationship between brain development and feeding in preterm infants, who are physiologically and developmentally immature at birth, is only beginning to be quantitatively assessed, coinciding with the recent advent of neuroimaging techniques. In the current work, we studied a sample of 50 preterm infants—born between 29 and 33 weeks (32.20 ± 0.89 weeks) of gestational age, where 30 of them were breastfed and the remaining 20 were formula-fed. Resting-state functional magnetic resonance imaging (fMRI) was recorded around term-equivalent age (40.00 ± 1.31 weeks, range 39–44 weeks) using a 1.5-T scanner under sedation condition. Temporal brain networks were estimated by the correlation of sliding time-window time courses among regions of a predefined atlas. Through our newly introduced temporal efficiency approach, we examined, for the first time, the 3D spatiotemporal architecture of the temporal brain network. We found prominent temporal small-world properties in both groups, suggesting the arrangement of dynamic functional connectivity permits effective coordination of various brain regions for efficient information transfer over time at both local and global levels. More importantly, we showed that breastfed preterm infants exhibited greater temporal global efficiency in comparison with formula-fed preterm infants. Specifically, we found localized elevation of temporal nodal properties in the right temporal gyrus and bilateral caudate. Taken together, these findings provide new evidence to support the notion that breast milk promotes early brain development and cognitive function, which may have neurobiological and public health implications for parents and pediatricians.Breastfeeding has long been recognized to have beneficial effect on early neurodevelopment in infants. However, the influence of breastfeeding on reorganization of functional connectivity in preterm infants are largely unknown. To this end, we utilized our recently developed temporal brain network analysis framework to investigate the dynamic reorganization of brain functional connectivity in preterm infants fed with breast milk. We found that beyond an optimal temporal small-world topology, breastfed preterm infants exhibited improved network efficiency at both global and regional levels in comparisons with those of formula-fed infants.

Breastfeeding has long been recognized to have beneficial effect on early neurodevelopment in infants. However, the influence of breastfeeding on reorganization of brain functional connectivity in preterm infants are largely unknown. To this end, we utilized our recently developed temporal brain network analysis framework to investigate the dynamic reorganization of functional connectivity in preterm infants fed with breast milk. We found that beyond an optimal temporal small-world topology, breastfed preterm infants exhibited improved network efficiency at both global and regional levels in comparisons with those of formula-fed infants.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Kinney HC (2006) The near-term (late preterm) human brain and risk for periventricular leukomalacia: a review. In: Seminars in perinatology, vol. 30, no. 2. Elsevier, pp 81–88

  2. Hallowell SG, Spatz DL (2012) The relationship of brain development and breastfeeding in the late-preterm infant. J Pediatr Nurs 27(2):154–162

    Article  PubMed  Google Scholar 

  3. Batalle D, Eixarch E, Figueras F, Muñoz-Moreno E., Bargallo N, Illa M, Acosta-Rojas R, Amat-Roldan I, Gratacos E (2012) Altered small-world topology of structural brain networks in infants with intrauterine growth restriction and its association with later neurodevelopmental outcome. Neuroimage 60(2):1352–1366

    Article  PubMed  Google Scholar 

  4. van den Heuvel MP, Kersbergen KJ, de Reus MA, Keunen K, Kahn RS, Groenendaal F, de Vries LS, Benders MJ (2014) The neonatal connectome during preterm brain development. Cereb Cortex 25(9):3000–3013

    Article  Google Scholar 

  5. Kerr-Wilson C, Mackay D, Smith G, Pell J (2011) Meta-analysis of the association between preterm delivery and intelligence. J Publ Health 34(2):209–216

    Article  Google Scholar 

  6. Foster-Cohen SH, Friesen MD, Champion PR, Woodward LJ (2010) High prevalence/low severity language delay in preschool children born very preterm. J Dev Behav Pediatr 31(8):658–667

    Article  PubMed  Google Scholar 

  7. Burnett AC, Scratch SE, Lee KJ, Cheong J, Searle K, Hutchinson E, De Luca C, Davey M-A, Roberts G, Doyle LW et al (2015) Executive function in adolescents born< 1000 g or< 28 weeks: a prospective cohort study. Pediatrics 135(4):e826–e834

    Article  PubMed  Google Scholar 

  8. Belfort MB, Anderson PJ, Nowak VA, Lee KJ, Molesworth C, Thompson DK, Doyle LW, Inder TE (2016) Breast milk feeding, brain development, and neurocognitive outcomes: a 7-year longitudinal study in infants born at less than 30 weeks’ gestation. J Pediatr 177:133–139

    Article  PubMed  PubMed Central  Google Scholar 

  9. Lucas A, Morley R, Cole TJ, Lister G, Leeson-Payne C (1992) Breast milk and subsequent intelligence quotient in children born preterm. Lancet 339(8788):261–264

    Article  CAS  PubMed  Google Scholar 

  10. Horwood LJ, Fergusson DM (1998) Breastfeeding and later cognitive and academic outcomes. Pediatrics 101(1):e9–e9

    Article  CAS  PubMed  Google Scholar 

  11. Organization HW et al (2001) The optimal duration of exclusive breastfeeding: a systematic review. World Health Organization, Technical Report, Geneva

    Google Scholar 

  12. McCann JC, Ames BN (2005) Is docosahexaenoic acid, an n- 3 long-chain polyunsaturated fatty acid, required for development of normal brain function? An overview of evidence from cognitive and behavioral tests in humans and animals–. Amer J Clin Nutrit 82(2):281–295

    Article  CAS  Google Scholar 

  13. Guesnet P, Alessandri J-M (2011) Docosahexaenoic acid (DHA) and the developing central nervous system (CNS)–implications for dietary recommendations. Biochimie 93(1):7–12

    Article  CAS  PubMed  Google Scholar 

  14. Isaacs EB, Gadian DG, Sabatini S, Chong WK, Quinn BT, Fischl BR, Lucas A (2008) The effect of early human diet on caudate volumes and IQ. Pediatr Res 63(3):308

    Article  PubMed  Google Scholar 

  15. Blesa M, Sullivan G, Anblagan D, Telford EJ, Quigley AJ, Sparrow SA, Serag A, Semple SI, Bastin ME, Boardman JP (2019) Early breast milk exposure modifies brain connectivity in preterm infants. Neuroimage 184:431–439

    Article  PubMed  Google Scholar 

  16. Deoni SC, Dean IIIDC, Piryatinsky I, O’Muircheartaigh J, Waskiewicz N, Lehman K, Han M, Dirks H (2013) Breastfeeding and early white matter development: a cross-sectional study. Neuroimage 82:77–86

    Article  PubMed  Google Scholar 

  17. Power JD, Fair DA, Schlaggar BL, Petersen SE (2010) The development of human functional brain networks. Neuron 67(5):735–748

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Mongerson CR, Jennings RW, Borsook D, Becerra L, Bajic D (2017) Resting-state functional connectivity in the infant brain: methods, pitfalls, and potentiality. Front Pediatr 5:159

    Article  PubMed  PubMed Central  Google Scholar 

  19. Gao W, Lin W, Grewen K, Gilmore JH (2017) Functional connectivity of the infant human brain: plastic and modifiable. Neuroscientist 23(2):169–184

    Article  PubMed  Google Scholar 

  20. Zhou Z, Zhang H, Hsu L-M, Lin W, Pan G, Shen D, Consortium UBCP et al (2019) Multi-layer temporal network analysis reveals increasing temporal reachability and spreadability in the first two years of life. In: International Conference on Medical Image Computing and Computer-Assisted Intervention. Springer, pp 665–672

  21. Zhang H, Shen D, Lin W (2019) Resting-state functional mri studies on infant brains: a decade of gap-filling efforts. Neuroimage 185:664–684

    Article  PubMed  Google Scholar 

  22. Fransson P, Åden U, Blennow M, Lagercrantz H (2010) The functional architecture of the infant brain as revealed by resting-state FMRI. Cereb Cortex 21(1):145–154

    Article  PubMed  Google Scholar 

  23. Gozdas E, Parikh NA, Merhar SL, Tkach JA, He L, Holland SK (2018) Altered functional network connectivity in preterm infants: antecedents of cognitive and motor impairments?. Brain Struct Funct 223(8):3665–3680

    Article  PubMed  PubMed Central  Google Scholar 

  24. Preti MG, Bolton TA, Van De Ville D (2017) The dynamic functional connectome: state-of-the-art and perspectives. Neuroimage 160:41–54

    Article  PubMed  Google Scholar 

  25. Sizemore AE, Bassett DS (2018) Dynamic graph metrics: tutorial, toolbox, and tale. Neuroimage 180:417–427

    Article  PubMed  Google Scholar 

  26. Calhoun VD, Miller R, Pearlson G, Adalı T (2014) The chronnectome: time-varying connectivity networks as the next frontier in FMRI data discovery. Neuron 84(2):262–274

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Hutchison RM, Womelsdorf T, Gati JS, Everling S, Menon RS (2013) Resting-state networks show dynamic functional connectivity in awake humans and anesthetized macaques. Hum Brain Mapp 34 (9):2154–2177

    Article  PubMed  Google Scholar 

  28. Dai Z, Chen Y, Li J, Fam J, Bezerianos A, Sun Y (2016) Temporal efficiency evaluation and small-worldness characterization in temporal networks. Sci Rep 6:34291

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Sun Y, Collinson SL, Suckling J, Sim K (2018) Dynamic reorganization of functional connectivity reveals abnormal temporal efficiency in schizophrenia. Schizophr Bull 45(3):659–669

    Article  PubMed Central  Google Scholar 

  30. Isaacs EB, Fischl BR, Quinn BT, Chong WK, Gadian DG, Lucas A (2010) Impact of breast milk on intelligence quotient, brain size, and white matter development. Pediatr Res 67(4):357

    Article  PubMed  PubMed Central  Google Scholar 

  31. Yan C, Zang Y (2010) Dparsf: a matlab toolbox for “pipeline” data analysis of resting-state FMRI. Front Syst Neurosci 4:13

    Google Scholar 

  32. Power JD, Plitt M, Laumann TO, Martin A (2017) Sources and implications of whole-brain FMRI signals in humans. Neuroimage 146:609–625

    Article  PubMed  Google Scholar 

  33. Shi F, Yap P-T, Wu G, Jia H, Gilmore JH, Lin W, Shen D (2011) Infant brain atlases from neonates to 1- and 2-year-olds. PloS One 6(4):e18746

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Allen EA, Damaraju E, Plis SM, Erhardt EB, Eichele T, Calhoun VD (2014) Tracking whole-brain connectivity dynamics in the resting state. Cereb Cortex 24(3):663–676

    Article  PubMed  Google Scholar 

  35. Leonardi N, Van De Ville D (2015) On spurious and real fluctuations of dynamic functional connectivity during rest. Neuroimage 104:430–436

    Article  PubMed  Google Scholar 

  36. Zalesky A, Breakspear M (2015) Towards a statistical test for functional connectivity dynamics. Neuroimage 114:466–470

    Article  PubMed  Google Scholar 

  37. Zalesky A, Fornito A, Bullmore E (2012) On the use of correlation as a measure of network connectivity. Neuroimage 60(4):2096–2106

    Article  PubMed  Google Scholar 

  38. Anderson JS, Druzgal TJ, Lopez-Larson M, Jeong E-K, Desai K, Yurgelun-Todd D (2011) Network anticorrelations, global regression, and phase-shifted soft tissue correction. Hum Brain Mapp 32(6):919–934

    Article  PubMed  Google Scholar 

  39. Chang C, Glover GH (2009) Effects of model-based physiological noise correction on default mode network anti-correlations and correlations. Neuroimage 47(4):1448–1459

    Article  PubMed  Google Scholar 

  40. Achard S, Bullmore E (2007) Efficiency and cost of economical brain functional networks. PLoS Comput Biol 3(2):e17

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  41. Holme P, Saramäki J (2012) Temporal networks. Phys Rep 519(3):97–125

    Article  Google Scholar 

  42. Watts DJ, Strogatz SH (1998) Collective dynamics of ‘small-world’ networks. Nature 393 (6684):440

    Article  CAS  PubMed  Google Scholar 

  43. Holme P (2014) Analyzing temporal networks in social media. Proc IEEE 102(12):1922–1933

    Article  Google Scholar 

  44. Thompson WH, Brantefors P, Fransson P (2017) From static to temporal network theory: applications to functional brain connectivity. Netw Neurosci 1(2):69–99

    Article  PubMed  PubMed Central  Google Scholar 

  45. Bullmore E, Sporns O (2009) Complex brain networks: graph theoretical analysis of structural and functional systems. Nat Rev Neurosci 10(3):186

    Article  CAS  PubMed  Google Scholar 

  46. Bassett DS, Bullmore E (2006) Small-world brain networks. Neurosci 12(6):512–523

    Google Scholar 

  47. Zalesky A, Fornito A, Cocchi L, Gollo LL, Breakspear M (2014) Time-resolved resting-state brain networks. Proc Natl Acad Sci 111(28):10 341–10 346

    Article  CAS  Google Scholar 

  48. Sun Y, Lim J, Dai Z, Wong K, Taya F, Chen Y, Li J, Thakor N, Bezerianos A (2017) The effects of a mid-task break on the brain connectome in healthy participants: a resting-state functional MRI study. Neuroimage 152:19–30

    Article  PubMed  Google Scholar 

  49. Sun Y, Yin Q, Fang R, Yan X, Wang Y, Bezerianos A, Tang H, Miao F, Sun J (2014) Disrupted functional brain connectivity and its association to structural connectivity in amnestic mild cognitive impairment and Alzheimer’s disease. PLoS One 9(5):e96505

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  50. Vohr BR, Poindexter BB, Dusick AM, McKinley LT, Higgins RD, Langer JC, Poole WK et al (2007) Persistent beneficial effects of breast milk ingested in the neonatal intensive care unit on outcomes of extremely low birth weight infants at 30 months of age. Pediatrics 120(4):e953–e959

    Article  PubMed  Google Scholar 

  51. Vohr BR, Poindexter BB, Dusick AM, McKinley LT, Wright LL, Langer JC, Poole WK et al (2006) Beneficial effects of breast milk in the neonatal intensive care unit on the developmental outcome of extremely low birth weight infants at 18 months of age. Pediatrics 118(1):e115–e123

    Article  PubMed  Google Scholar 

  52. Wang B, McVeagh P, Petocz P, Brand-Miller J (2003) Brain ganglioside and glycoprotein sialic acid in breastfed compared with formula-fed infants. Amer J Clin Nutrit 78(5):1024–1029

    Article  CAS  Google Scholar 

  53. Khedr E, Farghaly W, Amry SE-D, Osman A (2004) Neural maturation of breastfed and formula-fed infants. Acta Paediatr 93(6):734–738

    Article  CAS  PubMed  Google Scholar 

  54. Rykhlevskaia E, Gratton G, Fabiani M (2008) Combining structural and functional neuroimaging data for studying brain connectivity: a review. Psychophysiology 45(2):173–187

    Article  PubMed  Google Scholar 

  55. Jing H, Gilchrist JM, Badger TM, Pivik R (2010) A longitudinal study of differences in electroencephalographic activity among breastfed, milk formula-fed, and soy formula-fed infants during the first year of life. Early Hum Dev 86:119–125

    Article  PubMed  Google Scholar 

  56. Paus T, Collins D, Evans A, Leonard G, Pike B, Zijdenbos A (2001) Maturation of white matter in the human brain: a review of magnetic resonance studies. Brain Res Bull 54(3):255–266

    Article  CAS  PubMed  Google Scholar 

  57. Herba CM, Roza S, Govaert P, Hofman A, Jaddoe V, Verhulst FC, Tiemeier H (2013) Breastfeeding and early brain development: the g eneration r study. Maternal & Child Nutrit 9(3):332–349

    Article  Google Scholar 

  58. Mareschal D, Johnson MH (2003) The “what” and “where” of object representations in infancy. Cognition 88:259–276

    Article  PubMed  Google Scholar 

  59. Johnson MH, Dziurawiec S, Ellis H, John M (1991) Newborn’s preferential tracking of face-like stimuli and its subsequent decline. Cognition 40:1–19

    Article  CAS  PubMed  Google Scholar 

  60. Guxens M, Mendez MA, Moltó-puigmartxí C, Julvez J, García-Esteban R, Forns J, Ferrer M, Vrijheid M, López-Sabater MC, Sunyer J (2011) Breastfeeding, long-chain polyunsaturated fatty acids in colostrum, and infant mental development. Pediatrics 128(4):e880–e889

    Article  PubMed  Google Scholar 

  61. Power JD, Barnes KA, Snyder AZ, Schlaggar BL, Petersen SE (2012) Spurious but systematic correlations in functional connectivity MRI networks arise from subject motion. Neuroimage 59(3):2142–2154

    Article  PubMed  Google Scholar 

  62. Van Dijk KR, Sabuncu MR, Buckner RL (2012) The influence of head motion on intrinsic functional connectivity mri. Neuroimage 59(1):431–438

    Article  PubMed  Google Scholar 

  63. Fransson P, Skiöld B, Engström M, Hallberg B, Mosskin M, Åden U, Lagercrantz H, Blennow M (2009) Spontaneous brain activity in the newborn brain during natural sleep—an FMRI study in infants born at full term. Pediatr Res 66(3):301

    Article  PubMed  Google Scholar 

  64. Greicius MD, Kiviniemi V, Tervonen O, Vainionpää V, Alahuhta S, Reiss AL, Menon V (2008) Persistent default-mode network connectivity during light sedation. Hum Brain Mapp 29(7):839–847

    Article  PubMed  PubMed Central  Google Scholar 

  65. Fransson P, Skiöld B, Horsch S, Nordell A, Blennow M, Lagercrantz H, Åden U (2007) Resting-state networks in the infant brain. Proc Natl Acad Sci 104(39):15 531–15 536

    Article  CAS  Google Scholar 

  66. Vannest J, Rajagopal A, Cicchino ND, Franks-Henry J, Simpson SM, Lee G, Altaye M, Sroka C, Holland SK, Consortium CA et al (2014) Factors determining success of awake and asleep magnetic resonance imaging scans in nonsedated children. Neuropediatrics 45(06):370–377

    Article  PubMed  Google Scholar 

  67. Smith SM, Miller KL, Salimi-Khorshidi G, Webster M, Beckmann CF, Nichols TE, Ramsey JD, Woolrich MW (2011) Network modelling methods for FMRI. Neuroimage 54(2):875–891

    Article  PubMed  Google Scholar 

  68. Thomas Yeo B, Krienen FM, Sepulcre J, Sabuncu MR, Lashkari D, Hollinshead M, Roffman JL, Smoller JW, Zöllei L, Polimeni JR et al (2011) The organization of the human cerebral cortex estimated by intrinsic functional connectivity. J Neurophysiol 106(3):1125–1165

    Article  PubMed Central  Google Scholar 

  69. Shen X, Tokoglu F, Papademetris X, Constable RT (2013) Groupwise whole-brain parcellation from resting-state FMRI data for network node identification. Neuroimage 82:403–415

    Article  CAS  PubMed  Google Scholar 

  70. Fan L, Li H, Zhuo J, Zhang Y, Wang J, Chen L, Yang Z, Chu C, Xie S, Laird AR et al (2016) The human brainnetome atlas: a new brain atlas based on connectional architecture. Cereb Cortex 26(8):3508–3526

    Article  PubMed  PubMed Central  Google Scholar 

  71. Hollingshead A (1975) Four factor index of social status. Yale J Sociol 8:21–52

    Google Scholar 

Download references

Funding

This work was supported by the National Natural Science Foundation of China (Grant no. 81801785, 81573516), by the “Hundred Talents Program” of Zhejiang University and by the Fundamental Research Funds for the Central Universities (Grant no. 2019FZJD005 and 2020FZZX001-05). This work was partially supported by the National Key Research and Development Program of China (Grant no. 2016YFC0100300), Natural Science Foundation of Zhejiang Province (Grant no. 491050+N21702), Scientific Research Fund of Zhejiang Provincial Education Department (Grant no. Y201431325), Provincial and Ministerial Joint Construction Major Project of National Health Commission of Zhejiang Province (Grant no. WKJ-ZJ-2008), and Zhejiang Lab (Grant no. 2019KE0AD01).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Can Lai or Yu Sun.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Weiming Niu and Xinfen Xu are contributed equally to this work.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Niu, W., Xu, X., Zhang, H. et al. Breastfeeding improves dynamic reorganization of functional connectivity in preterm infants: a temporal brain network study. Med Biol Eng Comput 58, 2805–2819 (2020). https://doi.org/10.1007/s11517-020-02244-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11517-020-02244-3

Keywords

Navigation