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Abstract 

Error-related potentials (ErrPs) have been proposed for designing adaptive brain-computer interfaces (BCIs). 

Therefore, ErrPs must be decoded. The aim of this study was to evaluate ErrP decoding using combinations of 

different feature types and classifiers in BCI paradigms involving motor execution (ME) and imagination (MI). 

Fifteen healthy subjects performed 510 (ME) and 390 (MI) trials of right/left wrist extensions and foot 

dorsiflexions. Sham BCI feedback was delivered with an accuracy of 80% (ME) and 70% (MI). Continuous EEG 

was recorded and divided into ErrP and NonErrP epochs. Temporal, spectral, discrete wavelet transform (DWT) 

marginals, and template matching features were extracted, and all combinations of feature types were classified 

using linear discriminant analysis, support vector machine, and random forest classifiers. ErrPs were elicited for 

both ME and MI paradigms, and the average classification accuracies were significantly higher than the chance 

level. The highest average classification accuracy was obtained using temporal features and a combination of 

temporal+DWT features classified with random forest; 89±9% and 83±9% for ME and MI, respectively. These 

results generally indicate that temporal features should be used when detecting ErrPs, but there is great inter-

subject variability, which means that user-specific features should be derived to maximize the performance. 
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1 Introduction 

A brain-computer interface (BCI) system provides a communication pathway between a human brain and a 

computer by translating the user’s brain signals into computer commands [1]. In the past few decades, there have 

been many advancements in the application of BCIs such as rehabilitation of motor-impaired people [2], induction 

of neuroplasticity [3], speech synthesis or selection of characters on a screen [4]. Despite these advancements, real-

life BCI applications are still limited. One of the main constraints is the constant need for recalibration of the 

classifier in the BCI to maintain adequate performance, which is caused by e.g. changes in the electrode 

impedance, amplifier or environmental noise, fatigue or the user’s attention level [5,6]. A system that makes an 

online update of the classifier on its own is termed an adaptive BCI [7]. In an adaptive BCI, the classifier can be 

updated either after every classification run or after a pre-determined number of trials, but it is imperative that the 

update is done correctly using the appropriate data. One possible strategy can be to use physiologically elicited 

signals in response to an error made by a BCI system [6,7]. When a user gets feedback, which differs, from the 

intended action, the detectable error-related negativity (ERN) or error-related potential (ErrP) is elicited in the 

fronto-central region of the brain [8]. The ErrP consists of two main components: an error related negativity (ERN 

or Ne) and an error related positivity (ERP or Pe), which occurs within 50-800 ms after the realization of erroneous 

feedback [9,10]. It has been shown that various factors can modulate the ErrP; these include the user’s attention 

level [11], feedback modalities [12], the difference in the executed tasks [13, 15], or frequency of erroneous tasks 

[14]. Previous studies reported the varying amplitudes and latencies of the Ne and Pe peaks of the ErrPs occurring 

approximately within the first 350 ms [10], 550 ms [12] and 650 ms [15] time interval after the feedback 

presentation. Since the ErrPs are affected by various factors and are quite variable, single-trial detection of ErrPs is 

challenging. However, it has been shown that an adaptive BCI can be constructed using ErrPs [16-21]. Successful 

adaptation of the classifier in the BCI requires that the ErrPs are correctly detected. In the previous studies, several 

different types of features and classifiers have been employed for the classification of ErrPs [21,23,24]. According 

to a review on ErrPs classification [11], the two most commonly used features were spectral/frequency band power 

[26-33] in the theta (4-7 Hz), mu (8-12 Hz), and beta (13-30 Hz) range and temporal/mean amplitude features 

[27,29,30,34,35]. Generally, the features have been extracted within the first 1000 ms after the presentation of the 

feedback. The most commonly used classifiers for ErrP classification include linear discriminant analysis (LDA) 

[10,27,28,35,36], support vector machine (SVM) [22,37,38] and Gaussian filter [14,34,39]. Blankertz et al. 

classified ErrPs elicited during a motor task for left versus right finger movement using LDA [10]. With a 

predefined rate of false positives at 2%, more than 85% of the ErrPs were correctly classified. Likewise, Kreilinger 

et al. [27] also employed an LDA classifier for the ErrP classification during a BCI-driven car game. In [25], 

Spüler et al. classified the ErrPs elicited during a speller task by implementing the LDA, stepwise LDA, and SVM 

classifiers, and the results showed that the SVM was best suited for ErrPs detection. Moreover, Chavarriaga et al. 

[14] and Ferrez et al. [39] used a Gaussian classifier for the classification of ErrPs and reported an average 

recognition rate of correct and erroneous trials between approximately 65-85%. Hence, several different 

configurations have been outlined in the literature regarding the choice of features or classifiers for ErrP 

classification, but there are no clear guidelines about how ErrPs are best detected. In these studies, different control 

signals have been used to drive the BCI, such as visual evoked potentials [41], P300 [24,40], and motor-based 

signals [42]. The latter are important in BCI applications concerning neurorehabilitation where neuroplasticity is 

induced by using movement-related cortical potentials (MRCPs) to trigger neuromuscular electrical stimulation 

[43,44]. The MRCP can be elicited from either an executed or imagined movement [45,46], but there is a risk that 

the motor and reafferent potentials of the MRCP would coincide with the ErrP; this can potentially be solved by 

delaying the feedback to avoid an overlap between the MRCP components and the ErrP [15]. With an MRCP-

based BCI in mind, the aims of this study were to: 1) try to isolate the ErrP from the components of the MRCP, 2) 

quantify potential morphological differences between ErrPs elicited after executed and imagined movements of the 

upper and lower limbs, and 3) to identify the optimal combination of features and classifier if one such exists. This 

was tested with a sham BCI (providing pre-fixed mock feedback) that pretended to decode executed and imagined 

dorsiflexions of the ankle joint and wrist extensions. Temporal, spectral, time-scale, and template matching 

features were classified using LDA, SVM, and random forest (RF) classifiers. This study contributes to the 

existing literature with a systematic investigation of features and classifiers for ErrP classification in MRCP-based 
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BCIs and validates the findings of the ErrP morphology when elicited after the decoding of executed and 

imaginary movements. 

2 Methods 
2.1 Subjects 

Fifteen healthy subjects (nine males, six females: 25±10 years old) participated in this study. Each subject gave 

their informed consent before the participation, and the local ethical committee (N-20130081) approved the 

procedures. None of the subjects had any prior experience with BCI experiments. 

2.2 Data recording  

64 channels EEG were recorded with a sampling rate of 1200 Hz using active electrodes (g.HIamp G.Tec, Graz, 

Austria). The electrodes were placed according to the International 10-20 international. A linked ear reference was 

used, and the ground electrode was located at AFz. The impedance of all electrodes was kept below 5kΩ during the 

experiments. By using a NI DAQ data acquisition system, an external trigger was sent to the EEG amplifier from 

custom-made MATLAB (MathWorks, 2015) interface software. The trigger pulses were recorded to synchronize 

the continuous EEG with the presentation of feedback for dividing it into ErrP (‘Incorrect’ in Figure 1) and 

NonErrP (‘Correct’ in Figure 1) epochs. 

2.3 Experimental Details  

During the experiment, the subjects were seated in a comfortable chair facing a computer screen. The subjects were 

asked to avoid eye blinks or any unnecessary movement and keep their gaze at the screen during the movement 

and feedback-monitoring phase. Figure 1 shows the timeline for the ME and MI experiments, which were 

scheduled at two separate days, where ME experiments were performed on the first day. Each repetition of a task 

(either ME or MI) started with an idle phase of five seconds, during which the subjects could blink and relax. 

Subsequently, a preparation phase was started, which lasted for three seconds during which a text was displayed on 

the screen: ‘Prepare for the movement’. Next, during the ME or MI phase, a picture of a hand (pointing towards 

the right or left direction) or a foot was shown in the center of the computer screen to indicate movement of the 

respective hand or foot. The order of the movement types was randomized for each subject with an equal number 

of repetitions for each movement type. For the right or left hand, a wrist extension, and for the foot a dorsiflexion 

movement was performed (ME) or imagined (MI). Instead of recording the movements for both feet, it was 

restricted to only one side, either the left or the right foot based on the subject’s choice and convenience (each foot 

has approximately the same representation in the motor area [47]). Eight subjects preferred the right foot for ME 

and MI. Subjects were asked to execute or imagine the movement as soon as they saw the picture on the screen. 

Contrary to the conventional BCIs [10-12], the feedback was provided with a delay of three seconds in the form of 

a green tick mark or a red-colored cross sign. The delay of three seconds was chosen to try to better isolate the 

ErrP from the reafferent potential of the MRCP [48] and the event-related synchronization [49], which are 

observed up to two seconds after the movement onset, and to obtain a good synchronization of the trials when the 

subjects were cued to what time the feedback would be presented. Before the experiment, it was conveyed to the 

subjects that the system was decoding the intended movement from their brain signals, and the feedback type 

solely depended on their brain signals during the movement. The subjects’ brain activity in response to the correct 

or erroneous feedback was used for discrimination between NonErrPs and ErrPs. To give a notion of the variable 

performance across the movement types, the ratio of erroneous feedback was set different for ME and MI 

paradigms. The feedback ratio was set at 80:20 for correct and erroneous feedback in the case of the ME and 70:30 

for the MI paradigm based on previous findings of ME and MI detection using MRCPs [24]. To retrieve the 

approximately same number of ErrPs across both paradigms, 510 movements (170 movements each for the right 

wrist, left wrist and/foot) were performed for the ME paradigm and 390 (130 movements for each type of the limb) 

for the MI paradigm. The experiment for the ME paradigm was completed in 17 blocks, where each run consisted 

of the 30 movement repetitions. For the MI paradigm, the experiment was completed in 13 blocks with the same 

number of movement repetitions in each trial. After the completion of each run, a break was given to the subjects 

until they were ready to start the experiment again. The experiments were completed in approximately 180 minutes 

for the ME experiment and in 120 minutes for the MI experiment. 
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2.4 Signal Processing 
2.4.1 Pre-Processing  

Following the experiment, 37 channels of EEG (AF3-4, Fz, F1-6, FCz, FC1-6, Cz, C1-6, CPz, CP1-6, Pz, P1-6) 

were bandpass filtered between 0.5-30 Hz using an 8th order zero phase-shift Butterworth filter. These channels 

were chosen, as they have previously been found to be relevant when investigating ErrPs [50] and to reduce the 

dimensionality of the feature vector. Subsequently, bad channels and epochs were excluded from further analysis. 

Channels were excluded if the respective channel had a mean amplitude more than three standard deviations above 

the overall mean amplitude of the used channels. Epochs were excluded if the any samples in the epoch had an 

absolute value higher than 150 µV. These rejection thresholds were based on manual data exploration. Next, data 

was separated into 800 ms epochs, starting from the time instant of the feedback presentation (in Figure 1 this was 

when time = 3 s) balancing the number of ErrPs and NonErrPs. As the number of ErrPs was lower than the 

NonErrPs, NonErrPs were randomly chosen from those available, to match the number of ErrPs after the rejection 

of corrupted trials, such that an equal number of uncorrupted ErrPs and NonErrPs were used in the further 

analyses.  

2.4.2 Feature extraction 

After the bad channels and epochs were rejected, four types of features were extracted from the remaining channels 

and epochs. Features included temporal features (Temp), spectral power (Spec), discrete wavelet transform (DWT) 

marginals, and template matching (Match). Temp, Spec and DWT features were calculated in windows of 100 ms 

with no overlap. The Temp features were calculated as the arithmetic mean amplitude of the window. Spec 

features were estimated by integrating a periodogram, constructed using a Hamming window, over given 

frequencies bins. In this study, frequencies considered were 0-30 Hz in 5 Hz bins, with no overlap. DWT marginals 

were calculated based on the algorithms introduced in [51], briefly described: DWT coefficients where calculated 

at N levels of decomposition, where N is given as the binary logarithm of the length of the signal (N = 6, for a 

signal of l20 samples), using a Daubechies 4 mother wavelet. N DWT marginals were calculated for every 

window, by dividing the sum of the modulus of DWT coefficients at the nth level by the sum of the modulus of all 

DWT coefficients. All marginals were subsequently used as features. Match features were calculated as the 

autocorrelation between a given epoch and the average ErrP template for a given channel. The template was 

derived for each subject and paradigm individually and consisted of all ErrP trials. A total of 92 features per 

channel were extracted, giving a total of 3312-3404 features, dependent on whether channels were excluded. To 

investigate the effect of multiple combinations of features on the classification accuracies of ErrPs, Temp, Spec, 

DWT, and Match features were investigated in all possible combinations i.e. 15 distinct different combinations.  

 
2.4.3 Feature reduction 

Before feature reduction, features were divided into training and test sets, to accommodate a 5-fold cross-

validation classification procedure. The feature reduction was then employed on the training set, reducing the 

features using a PCA, keeping PCA dimensions equivalent to 95 % of the variance in the feature set. The resulting 

transformation matrix was then applied to the test set. This procedure was done separately for all the feature 

combinations and all training sets. On average, 13.4 ± 3.8 (mean ± standard deviation) features for the ME 

paradigm and 14.6 ± 5.1 features for the MI paradigm remained after the feature reduction. 

2.4.4 Classification 

After feature reduction LDA, SVM, and RF classifiers were trained for the classification of the ErrPs and 

NonErrPs by using the combinations of the Temp, Spec, DWT, and Match features. A linear SVM was employed, 

and the RF was trained using 128 trees, as no further improvement in classification accuracy is obtained by adding 

more trees [52]. To calculate the classification accuracy of each classifier across each set of features, the mean 

accuracy of the 5-fold cross-validation was reported.  

2.5 Morphological Analysis 

For morphological analysis of ErrPs and NonErrPs, the average was calculated across epochs from six seconds 

prior the onset of the presentation of the visual feedback (output of the sham BCI) and 0.8 seconds after the 

feedback presentation for all subjects at channel FCz [37] for the ME and MI paradigm. The grand averages across 

subjects are shown in Figure 4. To analyze the morphology of ErrPs and NonErrPs P1, N2 and P3 peaks were 
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extracted manually based on the peaks’ polarity. Then P1-N2 and N2-P3 peak-peak voltage (p-p) and latencies of 

peaks with respect to the feedback presentation time (time=0 ms) were calculated (see Figure 4). 

2.6 Statistical Analysis 

Normal distribution of data was checked by using the Shapiro-Wilk test before doing the statistical analysis. All 

the statistical tests were implemented by using IBM SPSS® software. To analyze the impact of feedback or 

movement type on the signal morphology two 2-way repeated-measures analysis of variance (ANOVA) were 

performed on the p-p voltage of the P1-N2 and N2-P3 peaks. The two factors were feedback (2 levels: Error, No-

Error) and movement paradigm (2 levels: ME and MI). Moreover, three 2-way repeated measures ANOVA were 

performed on the latencies of P1, N2 and P3 peaks using the same factors. Furthermore, the effect of feature type, 

movement paradigm, and choice of the classifier on the classification accuracies was analyzed using a 3-way 

repeated measure ANOVA. The three factors were feature type (15 levels: all possible combinations of the feature 

types), classifier (3 levels: LDA, SVM, and RF) and movement paradigm (2 levels: ME and MI). For significant 

test statistics, a post hoc pairwise comparison with Tukey’s correction was employed. The p-value<0.05 was 

considered statistically significant.  

3 Results 
On average, 0.8 channels (range: 0-1, maximum one channel was removed) and 54.3 ± 94.8 epochs were excluded 

from the ME paradigm, and 0.9 channels (range: 0-1) and 5.2 ± 9.6 epochs were excluded from the MI paradigm.  

 

3.1 Classification results 
The performance of classifiers was evaluated by calculating the classification accuracy (correct predictions to the 

total number of samples). The boxplots of the classification accuracies using all feature combinations for LDA, 

SVM, and RF classifiers across ME and MI paradigms are presented in Table 2 and Figures 2 and 3, respectively. 

The simple Temp and Temp+DWT features were associated with the highest classification accuracies for all three 

classifiers. On average, the highest classification accuracies for RF, SVM and LDA classifier across the ME and 

MI paradigm were observed to be 89±9%, 87±8%, 85±7% and 83±9%, 80±7%, 79±6%, respectively. Generally, 

there is great inter-subject variability. The results of the 3-way ANOVA showed a significant main effect on 

classification accuracies based on the choice of features type (F(14,196)=20.92; p<0.001), choice of classifiers 

(F(2,28)=52.5; p<0.001) and choice of a paradigm (F(1,14)=14.1; p<0.005). The post-hoc test revealed that the Temp 

and Temp+DWT features were associated with significantly higher classification accuracies compared to the other 

feature combinations (p<0.01 for all comparisons). The classification accuracies associated with the SVM were 

significantly lower as compared to LDA and RF (p<0.001), and significantly classification accuracies were 

obtained for the ME compared to the MI (p=0.02). There was no significant interaction between 

classifiers*paradigms (F(2,28)=0.118; p=0.889), features*paradigms (F(14,196)=0.221; p=0.999) or 

classifiers*features*paradigms (F(28,392)=0.184; p=1) but a significant interaction was observed between 

classifiers*features (F(28,392)=42.423, p<0.001).  

 

Table 2 Mean±standard deviation across subjects for the classification of ErrP vs NonErrP in the motor execution 

and motor imagination paradigm for each feature combination. T: Temporal, S: Spectral, M: Template matching, 

W: Marginals of the discrete wavelet transform (DWT). The highest classification accuracies were obtained using 

the temporal and DWT features. Generally, the highest accuraices were obtained using the RF classifier.    

 

 Motor Execution 

Features LDA SVM RF 

T 85± 7 87± 8 89± 9 

S 72± 9 63± 13 85± 10 

M 72± 9 56± 9 82± 12 

W 72± 15 74± 15 78± 19 

TS 72± 9 64± 13 85± 9 

TM 72± 9 57± 9 83± 11 

TW 85± 7 87± 8 89± 8 
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SM 72± 9 56± 9 82± 11 

SW 72± 9 63± 13 85± 10 

WM 72± 9 57± 9 82± 11 

TSM 72± 9 56± 9 82± 11 

TSW 72± 9 62± 12 85± 10 

TWM 72± 9 57± 9 82± 11 

SWM 72± 9 55± 9 82± 11 

TSWM 72± 9 55± 9 82± 11 

 Motor Imagination 

T 79± 6 80± 7 83± 9 

S 70± 6 57± 12 78± 13 

M 68± 7 53± 5 77± 12 

W 65± 14 66± 15 66± 20 

TS 69± 6 55± 13 77± 13 

TM 68± 7 53± 5 77± 12 

TW 79± 6 80± 7 83± 9 

SM 68± 7 54± 6 78± 12 

SW 70± 6 58± 11 78± 14 

WM 68± 7 53± 5 78± 12 

TSM 68± 7 54± 6 77± 12 

TSW 69± 6 57± 12 78± 13 

TWM 68± 7 53± 5 78± 12 

SWM 68± 7 54± 6 77± 12 

TSWM 68± 7 54± 6 78± 12 

 
3.2 Morphology results  

The grand averages and variability of ErrPs and NonErrPs along with the difference (ErrP minus NonErrP) for ME 

and MI paradigms are shown in Figure 4a and 4b, respectively. Moreover, the difference plots for ME and MI are 

plotted in Figure 4c. The mean and standard deviation for the P1-N2, N2-P3 p-p voltage, and P1, N2, P3 peak 

latencies for the ME and MI paradigm are presented in Table 1. It is evident from Figure 4 and Table 1 that on 

average P1, N2, and P3 were elicited approximately within the first 100 ms, 200 ms, and 300 ms after the 

presentation of the feedback. However, there is generally high inter-subject variability. The N1-P2 and N2-P3 p-p 

voltages for the ErrPs were observed to be approximately in a range of 5-16 µV for the ME and MI paradigms 

while the range for the NonErrPs was 2-12 µV. For the P1-N2 amplitude, a 2-way ANOVA revealed a significant 

effect of feedback on the p-p voltage (F(1,14)=30.446; p<0.001) with higher amplitudes for the ErrPs as compared to 

NonErrPs (p<0.001). There was no effect of movement paradigm on the P1-N2 amplitude (F(1,14)=1.104; p=0.311). 

For the N2-P3 amplitude, there was a significant effect of feedback (F(1,14)=89.036; p<0.001) with higher 

amplitudes for ErrPs compared to NonErrPs (p<0.001). There was no effect of the movement paradigm on the N2-

P3 amplitude (F(1,14)=4.388; p=0.055). There were no significant differences between the latencies of the P1, N2 

and P3 peaks for the movement paradigm: (F(1,14)=0.559, p=0.853), (F(1,14)=1.471; p=0.245), (F(1,14)=0.550; 

p=0.471) or for the feedback type: (F(1,14)=0.045; p=0.449), (F(1,14)=0.512; p=0.486), (F(1,14)=0.378; p=0.447), 

respectively. In Figure 4c it can be seen that the latencies of the different peaks are similar for the ME and MI 

paradigms, and the peaks have slightly higher amplitudes for the ME paradigm.    

Table 1 Mean±standard deviation of P1-N2, N2-P3 peak-peak (p-p) voltage and P1, N2, and P3 peak latencies 

across subjects (n=15). The peaks P1, N2 and P3 are elicited within 100ms - 360ms after the presentation of the 

visual feedback with a p-p voltages between 5-16 µV for ErrPs and 2-12 µV for Non-ErrPs. Similar amplitudes 

and latencies are obtained for motor execution and motor imagination.  

 

 

Motor Execution 

P1-N2 

p-p voltage 

N2-P3 

p-p voltage 

P1 

Latency 

N2 

Latency 

P3 

Latency 
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(µV) (µV) (ms) (ms) (ms) 

ErrP 6±8 16±6 103±16 192±22 283±27 

NonErrP 4±4 12±6 132±26 236±28 361±29 

 Motor Imagination 

ErrP 5±5 15±9 104±22 178±27 305±23 

NonErrP 2±3 10±6 180±29 242±33 352±31 

 Mean±std Mean±std Mean±std Mean±std Mean±std 

4 Discussion 

A systematic analysis was done to find an optimal set of features and classifier to discriminate between ErrPs and 

NonErrPs elicited through a sham BCI system designed for movement detection of right/left wrist extension and 

foot dorsiflexion for the ME and MI paradigms. Overall, in this study, the Temp and Temp+DWT features turned 

out to be the best choice of features as compared to any other combination of the spectral, DWT marginals or 

template matching features. While in terms of the classifiers, the RF classifier proved to be the best choice of a 

classifier as compared to the LDA and SVM classifier.  

4.1 Choice of an optimal set of features and classifier 

Previous studies that employed temporal features for the classification of ErrPs have reported the accuracies in the 

range of 72-85% [7,26,27,57]. In this study, the highest average classification accuracies achieved by using the 

temporal features reached up to 89±9%, 87±% and 85±7% for RF, SVM, and LDA classifier, respectively. The 

average and median of the classification accuracies are approximately similar to the classification accuracies that 

have been reported previously [7,19-21,26,27,57]. In this study, the simple mean features, and combination of 

temporal and DWT marginal features were better for discriminating between ErrPs and NonErrPs as compared to 

the spectral power, template matching or any other combination of features. Temporal features have generally been 

reported to be the best feature type for classifying ErrPs [31-33], although in an asynchronous detector spectral 

features were reported to be better than temporal features [32]. Spectral and template matching features could also 

be used to classify ErrPs which is in agreement with previous findings [32,58]. The difference between ErrPs and 

NonErrPs was subtle in the time domain, and the results indicate that it is not possible to discriminate between 

them in the frequency domain. Moreover, single-trials of ErrPs and NonErrPs may be too similar for template 

matching to be a viable feature for discriminating the two as suggested by the relatively large overlap of standard 

deviations of ErrPs and NonErrPs in Figure 4. However, when using RF, fairly high accuracies (above 80% and 

70% for ME and MI, respectively) were obtained for all feature combinations. This may indicate that the structure 

of the feature space based on the current data set is more suited for an ensemble classifier compared to LDA and 

SVM, which was implemented with a linear kernel. In the literature [7,19,20,59,60], the classification accuracies 

by employing LDA, SVM, and RF classifiers are reported to be approximately in the range of 70-90%. Although 

due to differences in experimental paradigms, pre-processing, feature extraction and feature reduction methods, the 

classification results for this study were similar except for the SVM results. The low performance of the SVM in 

the current study is not consistent with a recent study [15]; however, the methods differ since they used a radial 

basis function, which may be more suitable for the classification of ErrPs compared to a linear kernel. It is also 

possible to optimize the width parameter of the radial basis function, which probably would improve the 

classification accuracies. It was possible to obtain classification accuracies that were significantly higher than the 

chance level (α=0.05) for all features types [61]. It should be noted that the epochs containing ErrPs and NonErrPs 

were extracted with a priori knowledge of where to locate the potential of interest, and that the analysis was 

performed offline. This information about the location of the ErrP may be available in an online system as well 

since the potential would be evoked immediately after the output of the BCI. However, if the temporal association 

between BCI output and the ErrP varies, this may reduce the performance of the ErrP decoder. There was 

considerable variability in the performance of the ErrP decoding across subjects, and several feature types and 

combinations could be used (at least for RF). This suggests that user-specific features should be extracted for each 

user, but it may not be necessary to use all feature types, which would reduce the computational load in an online 

decoding system. Although the performance of the decoder was significantly higher than the chance level, it can be 

further improved, potentially using other signal processing approaches. This could be to use other classifiers (e.g. 
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some that do not require much pre-processing and feature extraction) [62], or signal processing techniques such as 

blind source separation [63] or spatial filters to improve the signal of interest [64]. 

4.2 Error-related potential morphology 

The BCI system designed in this study varied from the previous studies [10-12,15,53] in terms of the elicitation of 

the ErrP since the feedback was provided with a delay of three seconds instead of presenting it during or 

immediately after the task performance [10-12,15,16,53,54]. The reason for the delayed feedback presentation was 

to avoid an overlap between the reafferent potential of the MRCP [55] associated with the movement and the 

ErrP/NonErrP. Moreover, with this approach, we aimed at getting good synchronization of ErrP/NonErrP signals 

across trials to reduce the misalignment of trials with respect to the cue when averaging the epochs. It gave the 

subjects enough time to be prepared to receive the feedback. However, it appears that there was a negative 

expectancy potential preceding the presentation of the feedback and the rebound of this potential may overlap with 

the ErrP/NonErrP [56]. Therefore, this approach for isolating the ErrP/NonErrP was not optimal. Moreover, from a 

BCI perspective, it will not be realistic to receive feedback with such a delay. There was no difference between the 

ErrPs associated with ME and MI, this is in agreement with previous findings [15]. The amplitudes of the peaks of 

the ErrPs and NonErrPs varied considerably across subjects. It is not known if this is a natural variation between 

the subjects or if the ErrP protocol was not working properly, e.g. the subjects discovered the feedback was sham 

(this was not tested). Another factor that could contribute to the variability could be fatigue. Although several 

breaks were included, the experiments were quite long (2-3 hours), so fatigue could cause jitter in the trials if the 

subjects were not attentive immediately when the feedback was presented; this would affect the averages of the 

ErrP and NonErrP.  

5 Conclusion 

It was possible to elicit ErrPs after delayed sham feedback in both an ME and MI paradigm where the ErrPs were 

isolated from the MRCP. However, when using delayed feedback caution should be taken to avoid an expectancy 

potential prior the presentation of the BCI output. The ErrPs associated with ME and MI could be classified well-

above chance level with all feature types when using the random forest classifier; higher accuracies were obtained 

for ME. The best features were the temporal and DWT marginal features. It was possible to use a single feature 

type for the classification, which means that the feature vector does not have to be large. The results suggest that 

the type of classifier is important. It was shown that it is possible to decode single-trial ErrPs when a negative 

potential similar to the MRCP precedes them. This implies that ErrPs can be used to correctly identify classified 

movement trials in MRCP-based BCIs for rehabilitation applications where constant recalibration may be needed 

to account for shifts in attention during the BCI use.      
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Captions: 

Fig. 1 Time distribution for the experimental protocol. Initially, the subject rests for five seconds (-8 to -3 

seconds), after which the subject is instructed to prepare to execute or imagine a movement (-3 to 0 seconds). At 0 

seconds, an image is shown indicating what movements should be performed. After a 3-second delay, the output of 

the sham BCI is displayed to the subject. The feedback was visible for three seconds before a new repetition of the 

trial started  

 

Fig. 2  Boxplots (mean, median and quartiles) of the classifaction accuracies achieved by using linear discriminant 

analysis (LDA), support vector machine (SVM) and random forest (RF) classifiers for all combinations of features 

across the motor execution (ME) paradigm. T: Temporal, S: Spectral, M: Template matching, W: Marginals of the 

discrete wavelet transform (DWT). The highest classification accuracies were obtained using the temporal and 

DWT features. Generally, the highest accuraices were obtained using the RF classifier. Note that there is large 

inter-subject variability  
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Fig. 3 Boxplots (mean, median and quartiles) corresponding to the classifaction accuracies achieved using LDA, 

SVM and RF classifiers for all combinations of features across the motor imagination (MI) paradigm. T: Temporal, 

S: Spectral, M: Template matching, W: Marginals of the discrete wavelet transform. The highest classification 

accuracies were obtained using the temporal features. Generally, the highest accuraices were obtained using the RF 

classifier where all four feature types were associated with classification accuracies above 70%. Note that there is 

large inter-subject variability 

 

Fig. 4 Grand averages across the 15 subjects of the ErrP, NonErrP, and the difference (ErrP - NonErrP) for the 

Motor Execution paradigm (a) and Motor Imagination paradigm (b). The difference between ErrP and NonErrP for 

the two paradigms are plotted in the bottom graph (c). The shaded area represents the standard deviation across 

subjects. 0 seconds is where the feedback was presented to the subject. The ErrPs and NonErrPs are overlapping 

with slightly higher amplitudes for the ErrPs. There is no apparent difference between the ErrPs and NonErrPs 

associated with executed and imagined movements for the latencies and there are only slightly higher amplitudes 

of the peaks for the executed movements. It appears to be an expectancy potential immediately prior the feedback 

was presented to the subject. It should be noted that there is a considerable amount of inter-subject variability 
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