Skip to main content

Advertisement

Log in

Image-based state-of-the-art techniques for the identification and classification of brain diseases: a review

  • Review Article
  • Published:
Medical & Biological Engineering & Computing Aims and scope Submit manuscript

Abstract

Detection and classification methods have a vital and important role in identifying brain diseases. Timely detection and classification of brain diseases enable an accurate identification and effective management of brain impairment. Brain disorders are commonly most spreadable diseases and the diagnosing process is time-consuming and highly expensive. There is an utmost need to develop effective and advantageous methods for brain diseases detection and characterization. Magnetic resonance imaging (MRI), computed tomography (CT), and other various brain imaging scans are used to identify different brain diseases and disorders. Brain imaging scans are the efficient tool to understand the anatomical changes in brain in fast and accurate manner. These different brain imaging scans used with segmentation techniques and along with machine learning and deep learning techniques give maximum accuracy and efficiency. This paper focuses on different conventional approaches, machine learning and deep learning techniques used for the detection, and classification of brain diseases and abnormalities. This paper also summarizes the research gap and problems in the existing techniques used for detection and classification of brain disorders. Comparison and evaluation of different machine learning and deep learning techniques in terms of efficiency and accuracy are also highlighted in this paper. Furthermore, different brain diseases like leukoariaosis, Alzheimer’s, Parkinson’s, and Wilson’s disorder are studied in the scope of machine learning and deep learning techniques.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. Golemis EA, Scheet P, Beck TN, Scolnick EM, Hunter DJ, Hawk E, Hopkins N (2018) Molecular mechanisms of the preventable causes of cancer in the United States. Genes Dev 32:868–902

    CAS  PubMed  PubMed Central  Google Scholar 

  2. Yıldırım Ö, Baloglu UB, Acharya UR (2018) A deep convolutional neural network model for automated identification of abnormal EEG signals. Neural Comput & Applic:1–12. https://doi.org/10.1007/s00521-018-3889-z

  3. Dhar PK, Zhu H, Mishra SK (2004) Computational approach to systems biology from fraction to integration and beyond. IEEE Trans Nanobioscience 3(3):144–152

    PubMed  Google Scholar 

  4. Jensen JA (2007) Medical ultrasound imaging. Prog Biophys Mol Biol 93(1–3):153–165

    PubMed  Google Scholar 

  5. Mettler FA (2013) Essentials of radiology, 3rd edn. Saunders Elsevier, Philadelphia

    Google Scholar 

  6. Smith-Bindman R, Miglioretti DL, Johnson E, Lee C, Feigelson HS, Flynn M, Greenlee RT, Kruger RL, Hornbrook MC, Roblin D, Solberg LI, Vanneman N, Weinmann S, Williams AE (2012) Use of diagnostic imaging studies and associated radiation exposure for patients enrolled in large integrated health care systems 1996–2010. JAMA. 307(22):2400–2409

    CAS  PubMed  Google Scholar 

  7. Burstein D (2006) MRI for development of disease-modifying osteoarthritis drugs. NMR Biomed 19(6):669–680

    CAS  PubMed  Google Scholar 

  8. Umar AA, Atabo SM (2019) A review of imaging techniques in scientific research/clinical diagnosis. MOJ Anat Physiol 6(5):175–183. https://doi.org/10.15406/mojap.2019.06.00269

    Article  Google Scholar 

  9. Swartling FJ, Čančer M, Frantz A, Weishaupt H, Persson AI (2015) Deregulated proliferation and differentiation in brain tumors. Cell Tissue Res 359:225–254

    CAS  PubMed  Google Scholar 

  10. Rydberg J, Buckwalter KA, Caldemeyer KS, Phillips MD, Conces DJ, Jr Aisen AM, Persohn SA, Kopecky KK (2000) Multisection CT : scanning techniques and clinical applications. Radiographics 20(6):1787–1806

  11. Bachert P, Schroder L (2003) Magnetic resonance imaging spectroscopy. Radiology. 43(12):1113–1126

    CAS  Google Scholar 

  12. Young H (1999) Measurement of clinical and subclinical tumour response using [18F]-fluorodeoxyglucose and positron emission tomography: review and 1999 EORTC recommendations. Eur J Cancer 35(13):1773–1782

    CAS  PubMed  Google Scholar 

  13. Su R, Liu H (2020) Medical imaging and computer-aided diagnosis. Proceeding of 2020 International Conference on Medical Imaging and Computer-Aided Diagnosis (MICAD 2020)

  14. Wang Y, Lin Z, Cao J, Li M (2011) Automatic MRI brain tumor segmentation system based on localizing active contour models. Adv Mater Res 2134:219–220

    Google Scholar 

  15. Xie K, Yang J, Zhang Z, Zhu Y (2005) Semi-automated brain tumor and edema segmentation using MRI. Eur J Radiol 56:12–19

    PubMed  Google Scholar 

  16. Wells WM, Grimson WEL, Kikinis R, Jolesz FA (1996) Adaptive segmentation of MRI data. IEEE Trans Med Imaging 15:429–442. https://doi.org/10.1109/42.511747

    Article  CAS  PubMed  Google Scholar 

  17. Henriksson KM, Wickstrom K, Maltesson N, Ericsson A, Karlsson J, Lindgren F, Astrom K, McNeil TF, Agartz I (2006) A pilot study of facial, cranial and brain MRI morphometry in men with schizophrenia. Psychiatry Res Neuroimaging 147:187–195. https://doi.org/10.1016/j.pscychresns.2006.03.004

    Article  Google Scholar 

  18. Agnihotri P, Student Member, Fazel-Rezai R, Senior Member, Kaabouch N (2010) Comparative analysis of various brain imaging techniques. 32nd Annual International Conference of the IEEE Engineering in Medicine and Biology Society · EMBC 2010 Buenos Aires, Argentina

  19. Angulakshmi M, Lakshmi Priya GG (2017) Automated brain tumour segmentation techniques—a review. Int J Imaging Syst Technol 27:66–77

  20. Nishida M, Makris N, Kennedy DN, Vangel M, Fischl B, Krishnamoorthy KS, Caviness VS, Grant PE (2006) Detailed semiautomated MRI based morphometry of the neonatal brain: preliminary results. Neuroimage 32:1041–1049. https://doi.org/10.1016/j.neuroimage.2006.05.020

    Article  PubMed  Google Scholar 

  21. Mateen Moghbel, Abass Alavi, Neuroimaging part I, handbook of clinical neurology, 2016

    Google Scholar 

  22. Venugopal V, Intes X (2015) Multimodal diffuse optical imaging for biomedical applications. Biophotonics for Medical Applications 3–24

  23. Lee JS, Kim SK, Lee DS, Lee MC, Park KS (1998) A neural network classifier for the automatic interpretation of epileptogenic zones in F-18FDG brain PET. Proceedings of the 20th Annual International Conference of the IEEE Engineering in Medicine and Biology Society. Vol.20 Biomedical Engineering Towards the Year 2000 and Beyond (Cat. No.98CH36286), Hong Kong pp 1408-1411 vol 3. https://doi.org/10.1109/IEMBS.1998.747146

  24. Nieman K, Gaemperli O, Lancellotti P, Plein S (2015) Computed tomography. Advanced Cardiac Imaging 1st edition, Elsevier

  25. Printz C (2019) Pediatric computed tomography scans: weighing the risks and benefits. Cancer. https://doi.org/10.1002/cncr.31947

  26. Zacharaki EI, Wang S, Chawla S, Yoo DS, Wolf R, Melhem ER, Davatzikos C, (2009) MRI-based classification of brain tumor type and grade using SVM-RFE. Proceedings of the Sixth IEEE international conference on Symposium on Biomedical Imaging 1035–1038

  27. Zhang Y, Wang S, Ji G, Dong Z (2013) An MR brain images classifier system via particle swarm optimization and kernel support vector machine. Multidimensional Signal Processing and Applications, Scientific World Journal

  28. McBee MP, Awan OA, Colucci AT, Ghobadi CW, Kadom N, Kansagra AP, Trindapani S, Auffermann WF (2018) Deep learning in radiology. Acad Radiol 25(11):1472–1480

    PubMed  Google Scholar 

  29. Romero MV (2019) Detecting brain hemorrhage in Computed Tomography (CT) imaging.https://medium.com/datadriveninvestor/detecting-brain-hemorrhage-in-computed-tomography-ct-imaging-d1276cb6bdb7

  30. Tandel GS, Biswas M, Kakde OG, Tiwari A, Suri HS, Turk M, Laird JR, Asare CK, Ankrah AA, Khanna NN, Madhusudhan BK, Saba L, Suri JS (2019) A review on a deep learning perspective in brain cancer classification. Cancers 11:111. https://doi.org/10.3390/cancers11010111

    Article  PubMed Central  Google Scholar 

  31. Brain tumor basics (2012) Available online: https://www.thebraintumourcharity.org/

  32. Understanding brain tumors: the basics (2018).  Available online https://www.roswellpark.org/cancertalk/201802/understanding-brain-tumors-basics

  33. Gaillard F (2015) https://radiopaedia.org/images/13655701

  34. Kim TJ, Kim IO, Kim WS, Cheon JE, Moon SG, Kwon JW, Seo JK, Yeon KM (2006) MR imaging of the brain in Wilson disease of childhood: findings before and after treatment with clinical correlation. Am J Neuroradiol 27(6):1373–1378

    CAS  PubMed  Google Scholar 

  35. Rodriguez T, MA, LPC (2017) MRI in Parkinson Disease: Expanding Usability for Better Diagnostics

  36. Goceri E (2017) Intensity normalization in brain MR images using spatially varying distribution matching. Conference: Conferences Computer Graphics, Visualization, Computer Vision and Image Processing At: Lisbon, pp 300–304

  37. Goceri E (2018) Fully Automated and Adaptive Intensity Normalization Using Statistical Features for Brain MR Images. Celal Bayar University Journal of Science 14(1):125–134. https://doi.org/10.18466/cbayarfbe.384729

  38. Golshan HM, Hasanzedeh RPR, Yousefzadeh SC (2013) An MRI de-noising method using data redundancy and local SNR estimation. Magn Reson Imaging 31:1206–1217

    PubMed  Google Scholar 

  39. Rajan J, den Dekker AJ, Sijbers J (2014) A new non-local maximum likelihood estimation method for Rician noise reduction in magnetic resonance images using the Kolmogorov–Smirnov test. Signal Process 103:16–23

    Google Scholar 

  40. Ma J, Plonka G (2007) Combined curve let shrinkage and nonlinear anisotropic diffusion. IEEE Trans Image Process 16:2198–2206

    PubMed  Google Scholar 

  41. Alexander ME, Baumgartner R, Summers AR, Windischberger C, Klarhoefer M, Moser E, Somorjai RL (2000) A wavelet-based method for improving signal-to-noise ratio and contrast in MR images. Magn Reson Imaging 18:169–180

    CAS  PubMed  Google Scholar 

  42. Gordillo N, Montseny E, Sobrevilla P (2010) A new fuzzy approach to brain tumor segmentation. International Conference on Fuzzy Systems, Barcelona, pp 1–8. https://doi.org/10.1109/FUZZY.2010.5584178.

  43. Li G, Wan Y (2010) Improved watershed segmentation with optimal scale based on ordered dither halftone and mutual information. In: IEEE International Conference on Computer Science and Information Technology, vol 9. IEEE, Chengdu, pp 296–300

    Google Scholar 

  44. Gibbs P, Buckley DL, Blackband SJ, Horsman A (1996) Tumour volume determination from MR images by morphological segmentation. Phys Med Biol 41(2437):2446

    Google Scholar 

  45. Sato M, Lakare S, Wan M, Kaufman A, Nakajima M (2000) A gradient magnitude based region growing algorithm for accurate segmentation. Proceedings 2000 International Conference on Image Processing (Cat. No.00CH37101). Vancouver, BC, Canada pp 448–451 vol 3. https://doi.org/10.1109/ICIP.2000.899432.

  46. Ho S, Bullitt E, Gerig G (2002) Level-set evolution with region competition: automatic 3-D segmentation of brain tumors. In: Proceedings of 16th International Conference on Pattern Recognition, vol 1. IEEE, Quebec City, pp 532–535

    Google Scholar 

  47. Zou Q, Wan S, Ju Y, Tang J, Zeng X (2016a) Pretata: predicting TATA binding proteins with novel features and dimensionality reduction strategy. BMC Syst Biol 10(Suppl. 4):114

    PubMed  PubMed Central  Google Scholar 

  48. Vasuda P, Satheesh S (2010) Improved fuzzy C-means algorithm for MR brain image segmentation. Int J Comput Sci Eng 2:1713–1715

    Google Scholar 

  49. Ji ZX, Sun QS, Xia DSA (2011) Modified possibilistic fuzzy c-means clustering algorithm for bias field estimation and segmentation of brain MR image. Comput Med Imaging Graph 35(5):383–397

    PubMed  Google Scholar 

  50. Ji Z, Liu J, Cao G, Sun Q, Chen Q (2014b) Robust spatially constrained fuzzy c-means algorithm for brain MR image segmentation. Pattern Recogn 47(7):2454–2466

    Google Scholar 

  51. Chuang KS, Tzeng HL, Chen S, Wu J, Chen TJ (2006) Fuzzy c-means clustering with spatial information for image segmentation. Comput Med Imaging Graph 30(1):9–15

    PubMed  Google Scholar 

  52. Xu R, Luo L, Ohya J (2011) Segmentation of MRI image. Advances in Brain Imaging. https://doi.org/10.5772/27596

  53. Sulaiman SN, Isa NAM (2010) Adaptive fuzzy-K-means clustering algorithm for image segmentation. IEEE Transactions on Consumer Electronics 56(4), pp 2661–2668

  54. Muller KR, Mika S, Ratsch G, Tsuda K, Scholkopf B (2001) An introduction to kernel-based learning algorithms. IEEE Trans Neural Netw 12:181–202. https://doi.org/10.1109/72.914517

    Article  CAS  PubMed  Google Scholar 

  55. AlZubi S, Islam N, Abbod M (2011) Multiresolution analysis using wavelet, ridgelet, and curvelet transforms for medical image segmentation, Hindawi Publishing Corporation. International Journal of Biomedical Imaging 136034:18. https://doi.org/10.1155/2011/136034

    Article  Google Scholar 

  56. Al-Ayyoub M, AlZu’bi S, Jararweh Y, Shehab MA, Gupta BB (2018) Accelerating 3D medical volume segmentation using GPUs. Multimed Tools Appl. https://doi.org/10.1007/s11042-016-4218-0

  57. AlZu’bi S, Amira A (2010) 3D Medical volume segmentation using hybrid multi resolution statistical approaches, Hindawi Publishing Corporation. Advances in Artificial Intelligence 520427. https://doi.org/10.1155/2010/520427

  58. Al-Zu’bi S, Al-Ayyoub M, Jararweh Y, Shehabb MA (2017) Enhanced 3D segmentation techniques for reconstructed 3D medical volumes: robust and accurate intelligent system. Procedia Computer Science 113:531–538

    Google Scholar 

  59. AlZubi S, Islam N, Abbod M (2011) Enhanced hidden Markov models for accelerating medical volumes segmentation. IEEE GCC Conference and Exhibition (GCC), February 19–22, 2011, Dubai, United Arab Emirates

  60. AlZuÕbi S, Shehab M, Al-Ayyoub M, Jararweh Y, Gupta B (2018) Parallel implementation for 3D medical volume fuzzy segmentation. Pattern Recogn Lett. https://doi.org/10.1016/j.patrec.2018.07.026

  61. Zu’bi SA, Islam N, Abbod M (2010) 3D Multiresolution Analysis for reduced features segmentation of medical volumes using PCA. IEEE Asia Pacific Conference on Circuits and Systems, Kuala Lumpur, pp 604–607. https://doi.org/10.1109/APCCAS.2010.5774847

  62. AlZubi S, Sharif MS, Abbod M (2011) Efficient implementation and evaluation of wavelet packet for 3D medical image segmentation. IEEE International Symposium on Medical Measurements and Applications, Bari pp 619–622. https://doi.org/10.1109/MeMeA.2011.5966667

  63. Al-Zu’bi S, Hawashin B, Mughaid A, Baker T (2020) Efficient 3Dmedical image segmentation algorithm over a secured multimedia network. Multimed Tools Appl. https://doi.org/10.1007/s11042-020-09160-6

  64. Reza S, Iftekharuddin K (2013) Multi-class abnormal brain tissue segmentation using texture features. Proceedings of NCI-MICCAI Challenge on Multimodal Brain Tumour Segmentation, Nagoya, Japan, BRATS

  65. Pereira S, Meier R, McKinley R, Wiest R, Alves V, Silva CA, Reyes M (2018) Enhancing interpretability of automatically extracted machine learning features: application to a RBM-Random Forest system on brain lesion segmentation. Med Image Anal 44:228–244. https://doi.org/10.1016/j.media.2017.12.009

    Article  PubMed  Google Scholar 

  66. Amin J, Sharif M, Raza M, Saba T, Anjum MA (2019) Brain tumor detection using statistical and machine learning method. Comput Methods Prog Biomed 177:69–79. https://doi.org/10.1016/j.cmpb.2019.05.015

    Article  Google Scholar 

  67. Gupta N, Bhatele P, Khanna P (2019) Glioma detection on brain MRIs using texture and morphological features with ensemble learning. J Biomed Signal Process Control 47:115–125. https://doi.org/10.1016/j.bspc.2018.06.003

    Article  Google Scholar 

  68. Gupta N, Bhatele P, Khanna P (2017) Identification of Gliomas from brain MRI through adaptive segmentation and run length of centralized patterns. J Comput Sci 25:213–220. https://doi.org/10.1016/j.jocs.2017.02.009

    Article  Google Scholar 

  69. Song G, Huang Z, Zhao Y, Zhao X, Liu Y, Bao M, Han J, Li P (2019) A noninvasive system for the automatic detection of gliomas based on hybrid features and PSO-KSVM. IEEE Access 7:13842–13855. https://doi.org/10.1109/ACCESS.2019.2894435

  70. Hsieh KLC, Lo CM, Hsiao CJ (2017) Computer-aided grading of gliomas based on local and global MRI features. Comput Methods Prog Biomed 139:1–38

    Google Scholar 

  71. Subashini MM, Sahoo SK, Sunil V, Easwaran S (2016) A non-invasive methodology for the grade identification of astrocytoma using image processing and artificial intelligence techniques. Expert Syst Appl 43:186–196

    Google Scholar 

  72. Nabizadeh M, Kubat M (2015) Brain tumors detection and segmentation in MR images: Gabor wavelet vs. statistical features. J Comput Electr Eng 45:286–301. https://doi.org/10.1016/j.compeleceng.2015.02.007

    Article  Google Scholar 

  73. Ain Q, Jaffar MA, Choi TS (2014) Fuzzy anisotropic diffusion based segmentation and texture based ensemble classification of brain tumor. Appl Soft Comput 21:330–340. https://doi.org/10.1016/j.asoc.2014.03.019

    Article  Google Scholar 

  74. Pereira S, Festa J, Maria J, Sousa N, Silva C (2013) Automatic Brain Tissue Segmentation of Multi-sequence MR images using Random Decision Forests MICCAI Grand Challenge : MR Brain Image Segmentation

  75.  Urban, G, Bendszus, M, Hamprecht, F A and Kleesiek, J (2014) Multi-modal Brain Tumor Segmentation using Deep Convolutional NeuralNetworks. MICCAI BraTS (Brain Tumor Segmentation) Challenge. Proceedings, winningcontribution 31–35

  76. Lyksborg M, Puonti O, Agn M, Larsen R (2015) An ensemble of 2D convolutional neural networks for tumor segmentation.,Image Analysis. SCIA 2015. Lecture Notes in Computer Science, vol 9127. Springer, Cham. https://doi.org/10.1007/978-3-319-19665-7_17

  77. Taloa M, Baloglu UB, Yıldırıma O, Acharya UR (2019) Application of deep transfer learning for automated brain abnormality classification using MR images. J Cogn Syst Res 54:176–188. https://doi.org/10.1016/j.cogsys.2018.12.007

    Article  Google Scholar 

  78. Anaraki AK, Ayati M, Kazemi F (2019) Magnetic resonance imaging-based brain tumour grades classification and grading via convolutional neural networks and genetic algorithm. J Bio-Cybern Biomed Eng 39:63–74. https://doi.org/10.1016/j.bbe.2018.10.004

    Article  Google Scholar 

  79. Chen S, Ding C, Liu M (2019) Dual-force convolutional neural networks for accurate brain tumor segmentation. J Pattern Recognit. https://doi.org/10.1016/j.patcog.2018.11.009

  80. Havaei M, Davy A, Warde-Farley D, Biard A, Courville A, Bengio Y, Pal C, Jodoin PM, Larochelle H (2017) Brain tumour segmentation with deep neural networks. Med Image Anal 35:18–31

    PubMed  Google Scholar 

  81. Zikic D, Ioannou YA, Criminisi A, Brown M (2014) Segmentation of Brain Tumor Tissues with Convolutional Neural Networks. Proceedings of MICCAI workshop on multimodal brain tumor segmentation challenge (BRATS), Boston, Massachusetts

  82. Sasikala M, Kumaravel N (2008) A wavelet-based optimal texture feature set for classification of brain tumours. J Med Eng Technol 32:198–205

    CAS  PubMed  Google Scholar 

  83. El-Dahshan ESA, Hosny T, Salem ABM (2010) Hybrid intelligent techniques for MRI brain images classification. Dig Signal Process 20:433–441

    Google Scholar 

  84. Verma R, Zacharaki EI, Ou Y, Cai H, Chawla S, Lee S, Melhem ER, Wolf R, Davatzikos C (2008) Multiparametric tissue characterization of brain neoplasms and their recurrence using pattern classification of MR images. Acad Radiol 15:966–977

    PubMed  PubMed Central  Google Scholar 

  85. Chang J, Zhang L, Gu N, Zhang X, Minquan Yin R, Meng Q (2019) A mix-pooling CNN architecture with FCRF for brain tumor segmentation. J Vis Commun Image Represent 58:316–322. https://doi.org/10.1016/j.jvcir.2018.11.047

    Article  Google Scholar 

  86. Hemanth DJ, Anitha J, Naaji A, Geman O, Popescu DE, Son LH (2019) A modified deep convolutional neural network for abnormal brain image classification. IEEE Access 7:4275–4283. https://doi.org/10.1109/ACCESS.2018.2885639

  87. Peng B, Wang S, Zhou Z, Liu Y, Tong B, Zhang T, Dai Y (2017) Amultilevel-ROI-features-basedmachine learning method for detection of morph metric biomarkers in Parkinson’s disease. Neurosci Lett 651:88–94

    CAS  PubMed  Google Scholar 

  88. Amoroso N, La Rocca M, Monaco A, Bellotti R, Tangaro S (2018) Complex networks reveal early MRI markers of Parkinson’s disease. Med Image Anal 48:12–24. https://doi.org/10.1016/j.media.2018.05.004

    Article  PubMed  Google Scholar 

  89. Oliveira FPM, Faria DB, Costa DC, Castelo-Branco M, Tavares JMRS (2017) Extraction, selection and comparison of features for an effective automated computer-aided diagnosis of Parkinson’s disease based on FP-CIT SPECT images. Eur J Nucl Med Mol Imaging 45(6):1052–1062. https://doi.org/10.1007/s00259-017-3918-7

    Article  PubMed  Google Scholar 

  90. Goceri E, Goceri N (2017) Deep learning in medical image analysis: recent advances and future trends, International Conferences Computer Graphics, Visualization, Computer Vision and Image Processing  (CGVCVIP 2017) Lisbon, Portugal, pp 305–311

  91. Sanchez A, Mammone N, Morabito FC, Marino S, Adeli H (2019) A novel methodology for automated differential diagnosis of mild cognitive impairment and the Alzheimer’s disease using EEG signals. J Neurosci Methods 322:88–95

    Google Scholar 

  92. Choi H, Jin KH (2018) Alzheimer’s disease neuroimaging: predicting cognitive decline with deep learning of brain metabolism and amyloid imaging. Behav Brain Res 344:103–109

    CAS  PubMed  Google Scholar 

  93. Ni H, Zhou L, Ning X, Wang L (2016) Alzheimer’s disease neuroimaging: exploring multi fractal-basedfeatures for mild Alzheimer’s disease classification. Magn Reson Med 76(1):259–269

    PubMed  Google Scholar 

  94. Li M, Qin Y, Gao F, Zhu W, He X (2014a) Discriminative analysis of multivariate features from structuralMRI and diffusion tensor images. Magn Reson Imaging 32(8):1043–1051

    PubMed  Google Scholar 

  95. Dyrba M, Grothe M, Kirste T, Teipel SJ (2015) Multimodal analysis of functional and structural disconnectionin Alzheimer’s disease using multiple kernels SVM. Hum Brain Mapp 36(6):2118–2131

    PubMed  PubMed Central  Google Scholar 

  96. Pinaya WHL, Gadelha A, Doyle OM, Noto C, Zugman A, Cordeiro Q, Sato JR (2016) Using deep belief network modelling to characterize differences in brain morphometry in schizophrenia. Sci Rep 6(1):38897. https://doi.org/10.1038/srep38897

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  97. Yuan L, Wei X, Shen H, Zeng L-L, Hu D (2018) Multi-center brain imaging classification using a novel 3D CNN approach. IEEE Access 6:49925–49934. https://doi.org/10.1109/ACCESS.2018.2868813

  98. Yadav SS, Jadhav SM (2019) Deep convolutional neural network based medical image classifcation for disease diagnosis. J Big Data 6:113. https://doi.org/10.1186/s40537-019-0276-2

    Article  Google Scholar 

  99. Usman SM, Khalid S, Aslam MH (2020) Epileptic seizures prediction using deep learning techniques. Ieee Access 8. https://doi.org/10.1109/Access.2020.2976866

  100. Jain R, Jain N, Aggarwal A, Hemanth DJ (2019) Convolutional neural network based Alzheimer’s disease classification from magnetic resonance brain images. Cogn Syst Res 57:147–159

    Google Scholar 

  101. Togaçar M, Cömert Z, Ergen B (2020) Classification of brain MRI using hyper column technique with convolutional neural network and feature selection method. Expert Syst Appl 149:113274

    Google Scholar 

  102. Togaçar M, Ergen B, Cömert Z (2020) BrainMRNet: brain tumor detection using magnetic resonance images with a novel convolutional neural network model. Med Hypotheses 134:109531

    PubMed  Google Scholar 

  103. Kumar S, Mankame DP (2020) Optimization driven deep convolution neural network for brain tumor classification. Biocybernetics and Biomedical Engineering 40:1–15

    Google Scholar 

  104. Janghel RR, Rathore YK (2020) Deep convolution neural network based system for early diagnosis of Alzheimer’s disease. IRBM. https://doi.org/10.1016/j.irbm.2020.06.006

  105. Nayak DR, Dash R, Majhi B (2020) Automated diagnosis of multi-class brain abnormalities using MRI images: a deep convolutional neural network based method. Pattern Recogn Lett. https://doi.org/10.1016/j.patrec.2020.04.018

Download references

Funding

Dr. Li Kang is a recipient of a grant from the National Natural Science Foundation of China Grant Number 81960312.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jianjun Huang.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Haq, E.U., Huang, J., Kang, L. et al. Image-based state-of-the-art techniques for the identification and classification of brain diseases: a review. Med Biol Eng Comput 58, 2603–2620 (2020). https://doi.org/10.1007/s11517-020-02256-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11517-020-02256-z

Keywords

Navigation