Skip to main content

Advertisement

Log in

Rank-preserving biclustering algorithm: a case study on miRNA breast cancer

  • Original Article
  • Published:
Medical & Biological Engineering & Computing Aims and scope Submit manuscript

Abstract

Effective biomarkers aid in the early diagnosis and monitoring of breast cancer and thus play an important role in the treatment of patients suffering from the disease. Growing evidence indicates that alteration of expression levels of miRNA is one of the principal causes of cancer. We analyze breast cancer miRNA data to discover a list of biclusters as well as breast cancer miRNA biomarkers which can help to understand better this critical disease and take important clinical decisions for treatment and diagnosis. In this paper, we propose a pattern-based parallel biclustering algorithm termed Rank-Preserving Biclustering (RPBic). The key strategy is to identify rank-preserved rows under a subset of columns based on a modified version of all substrings common subsequence (ALCS) framework. To illustrate the effectiveness of the RPBic algorithm, we consider synthetic datasets and show that RPBic outperforms relevant biclustering algorithms in terms of relevance and recovery. For breast cancer data, we identify 68 biclusters and establish that they have strong clinical characteristics among the samples. The differentially co-expressed miRNAs are found to be involved in KEGG cancer related pathways. Moreover, we identify frequency-based biomarkers (hsa-miR-410, hsa-miR-483-5p) and network-based biomarkers (hsa-miR-454, hsa-miR-137) which we validate to have strong connectivity with breast cancer. The source code and the datasets used can be found at http://agnigarh.tezu.ernet.in/~rosy8/Bioinformatics_RPBic_Data.rar.

Graphical Abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Shimomura A, Shiino S, Kawauchi J, Takizawa S, Sakamoto H, Matsuzaki J, Ono M, Takeshita F, Niida S, Shimizu C, et al. (2016) Novel combination of serum microRNA for detecting breast cancer in the early stage. Cancer science 107(3):326–334

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Larrea E, Sole C, Manterola L, Goicoechea I, Armesto M, Arestin M, Caffarel MM, Araujo AM, Araiz M, Fernandez-Mercado M, et al. (2016) New concepts in cancer biomarkers: circulating miRNAs in liquid biopsies. Int. J. Mol. Sci. 17(5):627

    Article  PubMed Central  Google Scholar 

  3. Vargo-Gogola T, Rosen JM (2007) Modelling breast cancer: one size does not fit all. Nat Rev Cancer 7(9):659

    Article  CAS  PubMed  Google Scholar 

  4. Wang YK, Crampin EJ, et al. (2013) Biclustering reveals breast cancer tumour subgroups with common clinical features and improves prediction of disease recurrence. BMC Genomics 14(1):102

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Hamam R, Hamam D, Alsaleh KA, Kassem M, Zaher W, Alfayez M, Aldahmash A, Alajez NM (2017) Circulating microRNAs in breast cancer: novel diagnostic and prognostic biomarkers. Cell Death Dis. 8(9):e3045

    Article  PubMed  PubMed Central  Google Scholar 

  6. Brady-West DC, McGrowder DA (2011) Triple negative breast cancer: therapeutic and prognostic implications. Asian Pac J Cancer Prev 12(8):2139–2143

    PubMed  Google Scholar 

  7. Eswaran J, Cyanam D, Mudvari P, Reddy S DN, Pakala SB, Nair SS, Florea L, Fuqua SuzanneAW, Godbole S, Kumar R (2012) Transcriptomic landscape of breast cancers through mRNA sequencing. Scientific Reports 2:264

    Article  PubMed  PubMed Central  Google Scholar 

  8. Yang L, Shen Y, Yuan X, Zhang J, Wei J (2017) Analysis of breast cancer subtypes by AP-ISA biclustering. BMC Bioinformatics 18(1):481

    Article  PubMed  PubMed Central  Google Scholar 

  9. Zhang J, Le TD, Liu L, Li J (2017) Identifying miRNA sponge modules using biclustering and regulatory scores. BMC Bioinformatics 18(3):44

  10. Croce CM (2009) Causes and consequences of microRNA dysregulation in cancer. Nat. Rev. Genet. 10(10):704

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Fiannaca A, LaRosa M, LaPaglia L, Rizzo R, Urso A (2015) Analysis of miRNA expression profiles in breast cancer using biclustering. BMC Bioinformatics 16(4):S7

    Article  PubMed  PubMed Central  Google Scholar 

  12. Jin D, Lee H (2016) Prioritizing cancer-related microRNAs by integrating microRNA and mRNA datasets. Sci. Rep. 6:35350

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Madeira SC, Oliveira AL (2004) Biclustering algorithms for biological data analysis: a survey. IEEE/ACM Transactions on Computational Biology and Bioinformatics (TCBB) 1(1):24– 45

    Article  CAS  Google Scholar 

  14. Eren K, Deveci M, Küçüktunç O, Çatalyürek UV (2012) A comparative analysis of biclustering algorithms for gene expression data. Brief. Bioinformatics 14(3):279–292

    Article  PubMed  PubMed Central  Google Scholar 

  15. Mandal K, Sarmah R, Bhattacharyya DK (2018) Biomarker identification for cancer disease using biclustering approach: an empirical study. IEEE/ACM Transactions on Computational Biology and Bioinformatics

  16. Pontes B, Giráldez R, Aguilar-Ruiz JS (2015) Biclustering on expression data: a review. Journal of biomedical informatics 57:163–180

    Article  PubMed  Google Scholar 

  17. Padilha VA, Campello RJGB (2017) A systematic comparative evaluation of biclustering techniques. BMC Bioinformatics 18(1):55

    Article  PubMed  PubMed Central  Google Scholar 

  18. Hartigan JA (1972) Direct clustering of a data matrix. Journal of the american statistical association 67(337):123–129

    Article  Google Scholar 

  19. Wang Z, Li G, Robinson RW, Huang X (2016) Unibic: sequential row-based biclustering algorithm for analysis of gene expression data. Scientific Reports 6:23466

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Xue Y, Liao Z, Li M, Luo J, Kuang Q, Hu X, Li T (2015) A new approach for mining order-preserving submatrices based on all common subsequences. Computational and mathematical methods in medicine, 680434:1–680434:11 2015

  21. Cheng Y, Church GM (2000) Biclustering of expression data. In: Ismb, 8, pp 93–103

  22. Ben-Dor A, Chor B, Karp R, Yakhini Z (2003) Discovering local structure in gene expression data: the order-preserving submatrix problem. Journal of computational biology 10(3-4):373–384

    Article  CAS  PubMed  Google Scholar 

  23. Cheung L, Cheung DW, Kao B, Yip KY, Ng MK (2006) On mining micro-array data by order-preserving submatrix. Int J Bioinforma Res Appl 3(1):42–64

    Article  Google Scholar 

  24. Chui CK, Kao B, Yip KY, Lee SD (2008) Mining order-preserving submatrices from data with repeated measurements. In: Data Mining, 2008. ICDM’08. Eighth IEEE International Conference on, pp 133–142. IEEE

  25. Gao BJ, Griffith OL, Ester M, Xiong H, Zhao Q, Jones StevenJM (2012) On the deep order-preserving submatrix problem: a best effort approach. IEEE transactions on knowledge and data engineering 24(2):309–325

    Article  Google Scholar 

  26. Fang Q, Ng W, Feng J, Li Y (2012) Mining bucket order-preserving submatrices in gene expression data. IEEE transactions on knowledge and data engineering 24(12):2218–2231

    Article  Google Scholar 

  27. Fang Q, Ng W, Feng J, Li Y (2014) Mining order-preserving submatrices from probabilistic matrices. ACM Transactions on Database Systems (TODS) 39(1):6

    Article  Google Scholar 

  28. Rodriguez-Baena DS, Perez-Pulido AJ, Aguilar-Ruiz JS (2011) A biclustering algorithm for extracting bit-patterns from binary datasets. Bioinformatics 27(19):2738–2745

    Article  CAS  PubMed  Google Scholar 

  29. Henriques R, Madeira SC (2014) Bicspam: flexible biclustering using sequential patterns. BMC Bioinformatics 15(1):130

    Article  PubMed  PubMed Central  Google Scholar 

  30. Liu B, Xin Y, Cheung RayCC, Yan H (2014) GPU-based biclustering for microarray data analysis in neurocomputing. Neurocomputing 134:239–246

    Article  Google Scholar 

  31. Bhattacharya A, Cui Y (2017) A GPU-accelerated algorithm for biclustering analysis and detection of condition-dependent coexpression network modules. Scientific Reports 7(1):1–9

    Article  Google Scholar 

  32. Kim J, Eades P, Fleischer R, Hong S-H, Iliopoulos CS, Park K, Puglisi SJ, Tokuyama T (2014) Order-preserving matching. Theor Comput Sci 525:68–79

    Article  Google Scholar 

  33. Corizzo R, Pio G, Ceci M, Malerba D (2019) Dencast: distributed density-based clustering for multi-target regression. Journal of Big Data 6(1):43

    Article  Google Scholar 

  34. Pio G, Serafino F, Malerba D, Ceci M (2018) Multi-type clustering and classification from heterogeneous networks. Inf Sci 425:107–126

    Article  Google Scholar 

  35. Alves C ER, Cáceres EN, Song SW (2008) An all-substrings common subsequence algorithm. Discret Appl Math 156(7):1025–1035

    Article  Google Scholar 

  36. Prelić A, Bleuler S, Zimmermann P, Wille A, Bühlmann P, Gruissem W, Hennig L, Thiele L, Zitzler E (2006) A systematic comparison and evaluation of biclustering methods for gene expression data. Bioinformatics 22(9):1122–1129

    Article  PubMed  Google Scholar 

  37. Henriques R, Madeira SC (2014) Bicpam: pattern-based biclustering for biomedical data analysis. Algorithms for Molecular Biology 9(1):27

    Article  PubMed  Google Scholar 

  38. deSouto MCP, Costa IG, deAraujo DSA, Ludermir TB, Schliep A (2008) Clustering cancer gene expression data: a comparative study. BMC bioinformatics 9(1):497

    Article  Google Scholar 

  39. Berriz GF, King OD, Bryant B, Sander C, Roth FP (2003) Characterizing gene sets with func associate. Bioinformatics 19(18):2502–2504

    Article  CAS  PubMed  Google Scholar 

  40. Oghabian A, Kilpinen S, Hautaniemi S, Czeizler E (2014) Biclustering methods: biological relevance and application in gene expression analysis. PloS one 9(3):e90801

    Article  PubMed  PubMed Central  Google Scholar 

  41. Chia BKH, Karuturi RKM (2010) Differential co-expression framework to quantify goodness of biclusters and compare biclustering algorithms. Algorithms for Molecular Biology 5(1):23

    Article  PubMed  Google Scholar 

  42. Farazi TA, Horlings HM, ten Hoeve J, Mihailovic A, Halfwerk H, Morozov P, Brown M, Hafner M, Reyal F, van Kouwenhove M, et al. (2011) Microrna sequence and expression analysis in breast tumors by deep sequencing. Cancer Research 71: canres– 0608

  43. Luo Z, Zhao Y, Azencott R (2014) Impact of miRNA sequence on miRNA expression and correlation between miRNA expression and cell cycle regulation in breast cancer cells. PloS one 9(4):e95205

    Article  PubMed  PubMed Central  Google Scholar 

  44. Vlachos IS, Zagganas K, Paraskevopoulou MD, Georgakilas G, Karagkouni D, Vergoulis T, Dalamagas T, Hatzigeorgiou AG (2015) Diana-mirpath v3. 0: deciphering microRNA function with experimental support. Nucleic Acids Research 43(W1):W460–W466

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Costa DaniellyCF, deOliveira GuilhermeAP, Cino EA, Soares IN, Rangel LP, Silva JL (2016) Aggregation and prion-like properties of misfolded tumor suppressors: is cancer a prion disease?. Cold Spring Harbor Perspectives in Biology 8(10):a023614

    Article  PubMed  PubMed Central  Google Scholar 

  46. Wu X, Somlo G, Yu Y, Palomares MR, Li AX, Zhou W, Chow A, Yen Y, Rossi JJ, Gao H, et al. (2012) De novo sequencing of circulating miRNAs identifies novel markers predicting clinical outcome of locally advanced breast cancer. Journal of Translational Medicine 10(1):42

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Cao Z-G, Li J-J, Yao L, Huang Y-N, Liu Y-R, Hu X, Song C-G, Shao Z-M (2016) High expression of microRNA-454 is associated with poor prognosis in triple-negative breast cancer. Oncotarget 7 (40):64900

    Article  PubMed  PubMed Central  Google Scholar 

  48. Zhao Y, Li Y, Lou G, Zhao L, Xu Z, Zhang Y, He F (2012) Mir-137 targets estrogen-related receptor alpha and impairs the proliferative and migratory capacity of breast cancer cells. PloS one 7 (6):e39102

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Li Y, Qiu C, Tu J, Geng B, Yang J, Jiang T, Cui Q (2013) Hmdd v2. 0: a database for experimentally supported human microRNA and disease associations. Nucleic Acids Research 42 (D1):D1070–D1074

    Article  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Koyel Mandal.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Mandal, K., Sarmah, R., Bhattacharyya, D.K. et al. Rank-preserving biclustering algorithm: a case study on miRNA breast cancer. Med Biol Eng Comput 59, 989–1004 (2021). https://doi.org/10.1007/s11517-020-02271-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11517-020-02271-0

Keywords

Navigation