Skip to main content
Log in

Smoothed particle hydrodynamics simulation of biphasic soft tissue and its medical applications

  • Original Article
  • Published:
Medical & Biological Engineering & Computing Aims and scope Submit manuscript

Abstract

Modeling the coupled fluid and elastic mechanics of blood perfused soft tissues is important for medical applications. In particular, the current study aims to capture the effect of tissue swelling and the transport of blood through damaged tissue under bleeding or hemorrhaging conditions. The soft tissue is considered a dynamic poro-hyperelastic material with blood-filled voids. A biphasic formulation—effectively, a generalization of Darcy’s law—is utilized, treating the phases as occupying fractions of the same volume. A Stokes-like friction force and a pressure that penalizes deviations from volume fractions summing to unity serve as the interaction force between solid and liquid phases. The resulting equations for both phases are discretized with the method of smoothed particle hydrodynamics (SPH). The solver is validated separately on each phase and demonstrates good agreement with exact solutions in test problems. Simulations of oozing, hysteresis, swelling, drying and shrinkage, and tissue fracturing and hemorrhage are shown in the paper.

In the paper, a new methodology for the numerical simulation of the full dynamic response of blood-perfused soft tissues was developed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  1. Cowin S C, Doty S B (2007) Tissue mechanics. Springer Science & Business Media

  2. Ricken T, Dahmen U, Dirsch O (2010) A biphasic model for sinusoidal liver perfusion remodeling after outflow obstruction. Biomech Model Mechanobiol 9(4):435–450

    Article  PubMed  Google Scholar 

  3. Ehlers W, Wagner A (2015) Multi-component modelling of human brain tissue: a contribution to the constitutive and computational description of deformation, flow and diffusion processes with application to the invasive drug-delivery problem. Comput Methods Biomech Biomed Engin 18(8):861–879

    Article  PubMed  Google Scholar 

  4. Chong K, Jiang C, Ram D, Santhanam A, Terzopoulos D, Benharash P, Dutson E, Teran J, Eldredge J D (2017) Visualization of vascular injuries in extremity trauma. Med Biol Eng Comput 1–10

  5. Behrou R, Foroughi H, Haghpanah F (2018) Numerical study of temperature effects on the poro-viscoelastic behavior of articular cartilage. J Mech Behav Biomed Mater 78:214–223

    Article  PubMed  Google Scholar 

  6. Biot M A (1941) General theory of three-dimensional consolidation. J Appl Phys 12(2):155–164

    Article  Google Scholar 

  7. Detournay E, Cheng A H -D (1993) Fundamentals of poroelasticity. In: Analysis and design methods: comprehensive rock engineering: principles, practice and projects. Elsevier, vol 2, p 113

  8. Bowen R M (1980) Incompressible porous media models by use of the theory of mixtures. Int J Eng Sci 18(9):1129–1148

    Article  CAS  Google Scholar 

  9. Mow V C, Kuei S C, Lai W M, Armstrong C G (1980) Biphasic creep and stress relaxation of articular cartilage in compression: theory and experiments. J Biomech Eng 102(1):73–84

    Article  CAS  PubMed  Google Scholar 

  10. De Boer R, Kowalski S J (1983) A plasticity theory for fluid-saturated porous solids. Int J Eng Sci 21(11):1343–1357

    Article  Google Scholar 

  11. De Boer R, Ehlers W (1986) On the problem of fluid-and gas-filled elasto-plastic solids. Int J Solids Struct 22(11):1231–1242

    Article  Google Scholar 

  12. De Boer R (2006) Trends in continuum mechanics of porous media. Springer Science & Business Media, vol 18

  13. Ricken T, Schwarz A, Bluhm J (2007) A triphasic model of transversely isotropic biological tissue with applications to stress and biologically induced growth. Comput Mater Sci 39(1):124–136

    Article  CAS  Google Scholar 

  14. Chapelle D, Gerbeau J -F, Sainte-Marie J, Vignon-Clementel I E (2010) A poroelastic model valid in large strains with applications to perfusion in cardiac modeling. Comput Mech 46(1):91–101

    Article  Google Scholar 

  15. Regueiro R A, Ebrahimi D (2010) Implicit dynamic three-dimensional finite element analysis of an inelastic biphasic mixture at finite strain: part 1: application to a simple geomaterial. Comput Methods Appl Mech Eng 199(29-32):2024–2049

    Article  Google Scholar 

  16. Gingold R A, Monaghan J J (1977) Smoothed particle hydrodynamics: theory and application to non-spherical stars. Mon Not R Astron Soc 181(3):375–389

    Article  Google Scholar 

  17. Libersky L D, Petschek A G (1991) Smooth particle hydrodynamics with strength of materials. In: Advances in the free-lagrange method including contributions on adaptive gridding and the smooth particle hydrodynamics method. Springer, pp 248–257

  18. Owen J M, Villumsen J V, Shapiro P R, Martel H (1998) Adaptive smoothed particle hydrodynamics: methodology. II. Astrophys J Suppl Ser 116(2):155

    Article  Google Scholar 

  19. Monaghan J J (2000) SPH without a tensile instability. J Comput Phys 159(2):290–311

    Article  Google Scholar 

  20. Gray J P, Monaghan J J, Swift R P (2001) SPH elastic dynamics. Comput Methods Appl Mech Eng 190(49):6641–6662

    Article  Google Scholar 

  21. Liu G -R, Liu M B (2003) Smoothed particle hydrodynamics: a meshfree particle method. World Scientific

  22. Müller M, Charypar D, Gross M (2003) Particle-based fluid simulation for interactive applications. In: Proceedings of the 2003 ACM SIGGRAPH/Eurographics symposium on computer animation. Eurographics association, pp 154–159

  23. Kelager M (2006) Lagrangian fluid dynamics using smoothed particle hydrodynamics. Master’s thesis, University of Copenhagen

  24. Kawashima Y, Sakai Y (2007) Large deformation analysis of hyperelastic materials using SPH method. e-Journal of Soft Materials 3:21–28

    Article  Google Scholar 

  25. Shao S, Lo E Y M (2003) Incompressible SPH method for simulating Newtonian and non-Newtonian flows with a free surface. Adv Water Resour 26(7):787–800

    Article  Google Scholar 

  26. Vakilha M, Manzari M T (2008) Modelling of power-law fluid flow through porous media using smoothed particle hydrodynamics. Transp Porous Media 74(3):331–346

    Article  Google Scholar 

  27. Ellero M, Tanner R I (2005) SPH Simulations of transient viscoelastic flows at low Reynolds number. J Non-Newtonian Fluid Mech 132(1):61–72

    Article  CAS  Google Scholar 

  28. Rafiee A, Manzari M T, Hosseini M (2007) An incompressible SPH method for simulation of unsteady viscoelastic free-surface flows. Int J Non Linear Mech 42(10):1210–1223

    Article  Google Scholar 

  29. Behley J, Steinhage V, Cremers A B (2015) Efficient radius neighbor search in three-dimensional point clouds. In: 2015 IEEE International conference on robotics and automation (ICRA). IEEE, pp 3625–3630

  30. Sbalzarini I F, Walther J H, Bergdorf M, Hieber S E, Kotsalis E M, Koumoutsakos P (2006) PPM–a highly efficient parallel particle–mesh library for the simulation of continuum systems. J Comput Phys 215(2):566–588

    Article  Google Scholar 

  31. Sbalzarini I F, Walther J H, Polasek B, Chatelain P, Bergdorf M, Hieber S E, Kotsalis E M, Koumoutsakos P (2006) A software framework for the portable parallelization of particle-mesh simulations. In: European conference on parallel processing. Springer, pp 730–739

  32. Harada T, Koshizuka S, Kawaguchi Y (2007) Smoothed particle hydrodynamics on GPUs. In: Computer graphics international. SBC petropolis, vol 40, pp 63–70

  33. Crespo A C, Dominguez J M, Barreiro A, Gómez-Gesteira M, Rogers B D (2011) GPUS, a new tool of acceleration in CFD: efficiency and reliability on smoothed particle hydrodynamics methods. PLoS One 6(6):e20685

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Ihmsen M, Akinci N, Becker M, Teschner M (2011) A parallel SPH implementation on multi-core cpus. In: Computer graphics forum. Wiley Online Library, vol 30, pp 99–112

  35. Domínguez J M, Crespo A J C, Valdez-Balderas D, Rogers B D, Gómez-Gesteira M (2013) New multi-GPU implementation for smoothed particle hydrodynamics on heterogeneous clusters. Comput Phys Commun 184(8):1848–1860

    Article  Google Scholar 

  36. Crespo A J C, Domínguez J M, Rogers B D, Gómez-Gesteira M, Longshaw S, Canelas R, Vacondio R, Barreiro A, García-Feal O (2015) DualSPHysics: open-source parallel CFD solver based on smoothed particle hydrodynamics (SPH). Comput Phys Commun 187:204–216

    Article  CAS  Google Scholar 

  37. Solenthaler B, Pajarola R (2009) Predictive-corrective incompressible SPH. ACM Trans Graph 28(3):40

    Article  Google Scholar 

  38. Takamiya H, Okada H, Sakai Y, Fukui Y (2011) Smoothed particle hydrodynamics analysis on semi-solid metal forming process. Jpn J Ind Appl Math 28(1):183–203

    Article  Google Scholar 

  39. Gholami B, Comerford A, Ellero M (2014) A multiscale SPH particle model of the near-wall dynamics of leukocytes in flow. Int J Numer Methods Biomed Eng 30(1):83–102

    Article  Google Scholar 

  40. Polwaththe-Gallage H -N, Saha S C, Sauret E, Flower R, Senadeera W, Gu Y (2016) SPH-DEM approach to numerically simulate the deformation of three-dimensional RBCs in non-uniform capillaries. Biomed Eng Online 15(2):161

    Article  PubMed  PubMed Central  Google Scholar 

  41. Toma M (2017) The emerging use of SPH in biomedical applications. Significances Bioeng Biosci 1(1):1–4

    Google Scholar 

  42. Tampubolon A P, Gast T, Klár G, Fu C, Teran J, Jiang C, Museth K (2017) Multi-species simulation of porous sand and water mixtures. ACM Trans Graph 36(4):105

    Article  Google Scholar 

  43. Toma M, Nguyen P D H (2020) Coup-contrecoup brain injury: fluid–structure interaction simulations. International Journal of Crashworthiness 25(2):175–182

    Article  Google Scholar 

  44. De Boer R, Ehlers W (1990) Uplift, friction and capillarity: three fundamental effects for liquid-saturated porous solids. Int J Solids Struct 26(1):43–57

    Article  Google Scholar 

  45. Ricken T, De Boer R (2003) Multiphase flow in a capillary porous medium. Comput Mater Sci 28(3):704–713

    Article  Google Scholar 

  46. de Boer R, Didwania A K (2004) Two-phase flow and the capillarity phenomenon in porous solids–a continuum thermomechanical approach. Transp Porous Media 56(2):137–170

    Article  Google Scholar 

  47. Ehlers W, Markert B (2001) A linear viscoelastic biphasic model for soft tissues based on the theory of porous media. J Biomech Eng 123(5):418–424

    Article  CAS  PubMed  Google Scholar 

  48. Chui C, Kobayashi E, Chen X, Hisada T, Sakuma I (2004) Combined compression and elongation experiments and non-linear modelling of liver tissue for surgical simulation. Med Biol Eng Comput 42 (6):787–798

    Article  CAS  PubMed  Google Scholar 

  49. Chui C, Kobayashi E, Chen X, Hisada T, Sakuma I (2007) Transversely isotropic properties of porcine liver tissue: experiments and constitutive modelling. Med Biol Eng Comput 45(1):99–106

    Article  CAS  PubMed  Google Scholar 

  50. Jordan P, Socrate S, Zickler T E, Howe R D (2009) Constitutive modeling of porcine liver in indentation using 3D ultrasound imaging. J Mech Behav Biomed Mater 2(2):192–201

    Article  CAS  PubMed  Google Scholar 

  51. Gao Z, Lister K, Desai J P (2010) Constitutive modeling of liver tissue: experiment and theory. Ann Biomed Eng 38(2):505–516

    Article  PubMed  Google Scholar 

  52. Umale S, Chatelin S, Bourdet N, Deck C, Diana M, Dhumane P, Soler L, Marescaux J, Willinger R (2011) Experimental in vitro mechanical characterization of porcine Glisson’s capsule and hepatic veins. J Biomech 44(9):1678–1683

    Article  PubMed  Google Scholar 

  53. Lister K, Gao Z, Desai J P (2011) Development of in vivo constitutive models for liver: application to surgical simulation. Ann Biomed Eng 39(3):1060–1073

    Article  PubMed  Google Scholar 

  54. Umale S, Deck C, Bourdet N, Dhumane P, Soler L, Marescaux J, Willinger R (2013) Experimental mechanical characterization of abdominal organs: liver, kidney & spleen. J Mech Behav Biomed Mater 17:22–33

    Article  PubMed  Google Scholar 

  55. Mooney M (1940) A theory of large elastic deformation. J Appl Phys 11(9):582–592

    Article  Google Scholar 

  56. Rivlin R S (1948) Large elastic deformations of isotropic materials. IV. Further developments of the general theory. Philos Trans R Soc Lond A: Math Phys Eng Sci 241(835):379–397

    Article  Google Scholar 

  57. Springel V (2010) Smoothed particle hydrodynamics in astrophysics. Annu Rev Astron Astrophys 48:391–430

    Article  Google Scholar 

  58. Zhu Q, Hernquist L, Li Y (2015) Numerical convergence in smoothed particle hydrodynamics. Astrophys J 800(1):6

    Article  Google Scholar 

  59. Ahrens J, Geveci B, Law C (2005) Paraview: an end-user tool for large data visualization. The Visualization Handbook 717

  60. Ayachit U (2015) The paraview guide: a parallel visualization application. Kitware Inc.

Download references

Funding

We gratefully acknowledge the support of the US Army Medical Research Acquisition Activity (grant no. W81XWH-15-1-0147) and the US Office of Naval Research (grant no. N00014-13-C-0357).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jeff D. Eldredge.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Appendix: Kernel functions

Appendix: Kernel functions

The cubic spline kernel

$$ W(r,\kappa h)=\alpha_{0} \begin{cases} 1-\frac{3}{2}(r/h)^{2}+\frac{3}{4}(r/h)^{3}, & 0\leq r/h<1\\ \frac{1}{4}(2-r/h)^{3}, & 1\leq r/h<2\\ 0, & r/h\geq2\\ \end{cases} $$
(47)

where κ = 2 and α0 = 2/(3h), 10/(7πh2), 1/(πh3) in 1, 2, and 3 dimensions, respectively.

The third-degree polynomial kernel

$$ \begin{array}{@{}rcl@{}} &&{}W(r,\kappa h)\\&&{}=\alpha_{0} \begin{cases} -\frac{1}{2}(r/h)^{3}+(r/h)^{2}+\frac{1}{2}(r/h)-1, & 0\leq r/h<1\\ 0, & r/h\geq1\\ \end{cases} \end{array} $$
(48)

where κ = 1 and α0 = 10/(3πh2), 15/(2πh3) in 2 and 3 dimensions, respectively.

The sixth-degree polynomial kernel

$$ W(r,\kappa h)=\alpha_{0} \begin{cases} (1-(r/h)^{2})^{3}, & 0\leq r/h<1\\ 0, & r/h\geq1\\ \end{cases} $$
(49)

where κ = 1 and α0 = 35/(16h), 4/(πh2), 315/(64πh3) in 1, 2, and 3 dimensions, respectively.

The spiky kernel:

$$ W(r,\kappa h)=\alpha_{0} \begin{cases} (1-r/h)^{3}, & 0\leq r/h<1\\ 0, & r/h\geq1\\ \end{cases} $$
(50)

where κ = 1 and α0 = 4/h, 10/(πh2), 15/(πh3) in 1, 2, and 3 dimensions, respectively.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chang, YJ., Benharash, P., Dutson, E.P. et al. Smoothed particle hydrodynamics simulation of biphasic soft tissue and its medical applications. Med Biol Eng Comput 59, 227–242 (2021). https://doi.org/10.1007/s11517-020-02283-w

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11517-020-02283-w

Keywords

Navigation