Skip to main content
Log in

Automatic selection and feature extraction of motor-evoked potentials by transcranial magnetic stimulation in stroke patients

  • Original Article
  • Published:
Medical & Biological Engineering & Computing Aims and scope Submit manuscript

Abstract

Transcranial magnetic stimulation (TMS) allows the assessment of stroke patients’ cortical excitability and corticospinal tract integrity, which provide information regarding motor function recovery. However, the extraction of features from motor-evoked potentials (MEP) elicited by TMS, such as amplitude and latency, is performed manually, increasing variability due to observer-dependent subjectivity. Therefore, an automatic methodology could improve MEP analysis, especially in stroke, which increases the difficulty of manual MEP measurements due to brain lesions. A methodology based on time-frequency features of stroke patients’ MEPs that allows to automatically select and extract MEP amplitude and latency is proposed. The method was validated using manual measurements, performed by three experts, computed from patients’ affected and unaffected hemispheres. Results showed a coincidence of 58.3 to 80% between automatic and manual MEP selection. There were no significant differences between the amplitudes and latencies computed by two of the experts with those obtained with the automatic method, for most comparisons. The median relative error of amplitudes and latencies computed by the automatic method was 5% and 23%, respectively. Therefore, the proposed method has the potential to reduce processing time and improve the computation of MEP features, by eliminating observer-dependent variability due to the subjectivity of manual measurements.

Graphical abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

  1. Rotenberg A, Horvath JC, Pascual-Leone A (2014) Transcranial Magnetic Stimulation. Springer New York, New York

    Book  Google Scholar 

  2. Hallett M (2007) Transcranial magnetic stimulation: a primer. Neuron 55:187–199. https://doi.org/10.1016/j.neuron.2007.06.026

    Article  CAS  PubMed  Google Scholar 

  3. Groppa S, Oliviero A, Eisen A, Quartarone A, Cohen LG, Mall V, Kaelin-Lang A, Mima T, Rossi S, Thickbroom GW, Rossini PM, Ziemann U, Valls-Solé J, Siebner HR (2012) A practical guide to diagnostic transcranial magnetic stimulation: report of an IFCN committee. Clin Neurophysiol 123:858–882. https://doi.org/10.1016/j.clinph.2012.01.010

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Benjamin EJ, Muntner P, Alonso A, Bittencourt MS, Callaway CW, Carson AP, Chamberlain AM, Chang AR, Cheng S, Das SR, Delling FN, Djousse L, Elkind MSV, Ferguson JF, Fornage M, Jordan LC, Khan SS, Kissela BM, Knutson KL, Kwan TW, Lackland DT, Lewis TT, Lichtman JH, Longenecker CT, Loop MS, Lutsey PL, Martin SS, Matsushita K, Moran AE, Mussolino ME, O’Flaherty M, Pandey A, Perak AM, Rosamond WD, Roth GA, Sampson UKA, Satou GM, Schroeder EB, Shah SH, Spartano NL, Stokes A, Tirschwell DL, Tsao CW, Turakhia MP, VanWagner LB, Wilkins JT, Wong SS, Virani SS, On behalf of the American Heart Association Council on Epidemiology and Prevention Statistics Committee and Stroke Statistics Subcommittee (2019) Heart disease and stroke statistics—2019 update: a report from the American Heart Association. Circulation 139:e56–e528. https://doi.org/10.1161/CIR.0000000000000659

    Article  PubMed  Google Scholar 

  5. Winstein CJ, Stein J, Arena R, Bates B, Cherney LR, Cramer SC, Deruyter F, Eng JJ, Fisher B, Harvey RL, Lang CE, MacKay-Lyons M, Ottenbacher KJ, Pugh S, Reeves MJ, Richards LG, Stiers W, Zorowitz RD, American Heart Association Stroke Council, Council on Cardiovascular and Stroke Nursing, Council on Clinical Cardiology, and Council on Quality of Care and Outcomes Research (2016) Guidelines for adult stroke rehabilitation and recovery: a guideline for healthcare professionals from the American Heart Association/American Stroke Association. Stroke 47:e98–e169. https://doi.org/10.1161/STR.0000000000000098

    Article  PubMed  Google Scholar 

  6. McDonnell MN, Stinear CM (2017) TMS measures of motor cortex function after stroke: a meta-analysis. Brain Stimul 10:721–734. https://doi.org/10.1016/j.brs.2017.03.008

    Article  PubMed  Google Scholar 

  7. Stinear CM (2017) Prediction of motor recovery after stroke: advances in biomarkers. Lancet Neurol 16:826–836

    Article  PubMed  Google Scholar 

  8. Butler AJ, Kahn S, Wolf SL, Weiss P (2005) Finger extensor variability in TMS parameters among chronic stroke patients. J Neuroeng Rehabil 2:10. https://doi.org/10.1186/1743-0003-2-10

    Article  PubMed  PubMed Central  Google Scholar 

  9. Ackerley SJ, Stinear CM, Barber PA, Byblow WD (2014) Priming sensorimotor cortex to enhance task-specific training after subcortical stroke. Clin Neurophysiol 125:1451–1458. https://doi.org/10.1016/j.clinph.2013.11.020

    Article  PubMed  Google Scholar 

  10. Bestmann S, Swayne O, Blankenburg F, Ruff CC, Teo J, Weiskopf N, Driver J, Rothwell JC, Ward NS (2010) The role of contralesional dorsal premotor cortex after stroke as studied with concurrent TMS-fMRI. J Neurosci 30:11926–11937. https://doi.org/10.1523/JNEUROSCI.5642-09.2010

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Blesneag AV, Slăvoacă DF, Popa L, Stan AD, Jemna N, Isai Moldovan F, Mureșanu DF (2015) Low-frequency rTMS in patients with subacute ischemic stroke: clinical evaluation of short and long-term outcomes and neurophysiological assessment of cortical excitability. J Med Life 8:378–387

    CAS  PubMed  PubMed Central  Google Scholar 

  12. Boake C, Noser EA, Ro T, Baraniuk S, Gaber M, Johnson R, Salmeron ET, Tran TM, Lai JM, Taub E, Moye LA, Grotta JC, Levin HS (2007) Constraint-induced movement therapy during early stroke rehabilitation. Neurorehabil Neural Repair 21:14–24. https://doi.org/10.1177/1545968306291858

    Article  PubMed  Google Scholar 

  13. Borich MR, Wheaton LA, Brodie SM, Lakhani B, Boyd LA (2016) Evaluating interhemispheric cortical responses to transcranial magnetic stimulation in chronic stroke: a TMS-EEG investigation. Neurosci Lett 618:25–30. https://doi.org/10.1016/j.neulet.2016.02.047

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Bütefisch CM, Netz J, Weßling M et al (2003) Remote changes in cortical excitability after stroke. Brain 126:470–481. https://doi.org/10.1093/brain/awg044

    Article  PubMed  Google Scholar 

  15. Cicinelli P, Marconi B, Zaccagnini M, Pasqualetti P, Filippi MM, Rossini PM (2005) Imagery-induced cortical excitability changes in stroke: a transcranial magnetic stimulation study. Cereb Cortex 16:247–253. https://doi.org/10.1093/cercor/bhi103

    Article  PubMed  Google Scholar 

  16. Hoonhorst MH, Nijland RH, van den Berg JS, Emmelot CH, Kollen BJ, Kwakkel G (2015) How do Fugl-Meyer arm motor scores relate to dexterity according to the action research arm test at 6 months poststroke? Arch Phys Med Rehabil 96:1845–1849. https://doi.org/10.1016/j.apmr.2015.06.009

    Article  PubMed  Google Scholar 

  17. Rábago CA, Lancaster JL, Narayana S, Zhang W, Fox PT (2009) Automated-parameterization of the motor evoked potential and cortical silent period induced by transcranial magnetic stimulation. Clin Neurophysiol 120:1577–1587. https://doi.org/10.1016/j.clinph.2009.04.020

    Article  PubMed  PubMed Central  Google Scholar 

  18. Carino-Escobar RI, Carrillo-Mora P, Valdés-Cristerna R, Rodriguez-Barragan MA, Hernandez-Arenas C, Quinzaños-Fresnedo J, Galicia-Alvarado MA, Cantillo-Negrete J (2019) Longitudinal analysis of stroke patients’ brain rhythms during an intervention with a brain-computer interface. Neural Plast 2019:1–11. https://doi.org/10.1155/2019/7084618

    Article  Google Scholar 

  19. Rossini PM, Burke D, Chen R, Cohen LG, Daskalakis Z, di Iorio R, di Lazzaro V, Ferreri F, Fitzgerald PB, George MS, Hallett M, Lefaucheur JP, Langguth B, Matsumoto H, Miniussi C, Nitsche MA, Pascual-Leone A, Paulus W, Rossi S, Rothwell JC, Siebner HR, Ugawa Y, Walsh V, Ziemann U (2015) Non-invasive electrical and magnetic stimulation of the brain, spinal cord, roots and peripheral nerves: basic principles and procedures for routine clinical and research application. An updated report from an I.F.C.N. committee. Clin Neurophysiol 126:1071–1107. https://doi.org/10.1016/j.clinph.2015.02.001

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Bardi L, Bundt C, Notebaert W, Brass M (2015) Eliminating mirror responses by instructions. Cortex 70:128–136. https://doi.org/10.1016/j.cortex.2015.04.018

    Article  PubMed  Google Scholar 

  21. Tecuapetla-Trejo JE, Cantillo-Negrete J, Valdés-Cristerna R, et al (2020) Automatic recognition and feature extraction of motor-evoked potentials elicited by transcranial magnetic stimulation. pp 1037–1042

  22. Biabani M, Farrell M, Zoghi M, Egan G, Jaberzadeh S (2018) The minimal number of TMS trials required for the reliable assessment of corticospinal excitability, short interval intracortical inhibition, and intracortical facilitation. Neurosci Lett 674:94–100. https://doi.org/10.1016/j.neulet.2018.03.026

    Article  CAS  PubMed  Google Scholar 

  23. Pellegrini M, Zoghi M, Jaberzadeh S (2018) The effect of transcranial magnetic stimulation test intensity on the amplitude, variability and reliability of motor evoked potentials. Brain Res 1700:190–198. https://doi.org/10.1016/j.brainres.2018.09.002

    Article  CAS  PubMed  Google Scholar 

  24. Acler M, Robol E, Fiaschi A, Manganotti P (2009) A double blind placebo RCT to investigate the effects of serotonergic modulation on brain excitability and motor recovery in stroke patients. J Neurol 256:1152–1158. https://doi.org/10.1007/s00415-009-5093-7

    Article  CAS  PubMed  Google Scholar 

  25. Van Doren J, Langguth B, Schecklmann M (2015) TMS-related potentials and artifacts in combined TMS-EEG measurements: comparison of three different TMS devices. Neurophysiol Clin Neurophysiol 45:159–166. https://doi.org/10.1016/j.neucli.2015.02.002

    Article  Google Scholar 

  26. Ward N, Brown M, Thompson A, Frackowiak R (2003) Neural correlates of motor recovery after stroke: a longitudinal fMRI study. Brain 126:2476–2496. https://doi.org/10.1093/brain/awg245

    Article  CAS  PubMed  Google Scholar 

Download references

Funding

This study was funded by the Consejo Nacional de Ciencia y Tecnología (CONACYT), from grants with numbers SALUD-2015-2-262061 and SALUD-2018-02-B-S-45803.

Author information

Authors and Affiliations

Authors

Contributions

Conceptualization: Jessica Cantillo-Negrete and Ruben I. Carino-Escobar. Methodology: Jose E. Tecuapetla-Trejo, Jessica Cantillo-Negrete, Paul Carrillo-Mora, Emmanuel Ortega-Robles, and Ruben I. Carino-Escobar. Formal analysis and investigation: Jose E. Tecuapetla-Trejo, Ruben I. Carino-Escobar, and Raquel Valdés-Cristerna. Writing - original draft preparation: Jose E. Tecuapetla-Trejo and Ruben I. Carino-Escobar. Writing - review and editing: Jessica Cantillo-Negrete, Paul Carrillo-Mora, Raquel Valdés-Cristerna, Emmanuel Ortega-Robles, and Oscar Arias-Carrion. Funding acquisition: Jessica Cantillo-NegreteEditing: Oscar Arias-Carrion

Corresponding author

Correspondence to Ruben I. Carino-Escobar.

Ethics declarations

This research was approved by the Research and Ethics Committees of the National Institute of Rehabilitation Luis Guillermo Ibarra Ibarra with number 36/15. All patients signed an informed consent approved by the Ethics Committee of the National Institute of Rehabilitation Luis Guillermo Ibarra Ibarra.

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Tecuapetla-Trejo, J.E., Cantillo-Negrete, J., Carrillo-Mora, P. et al. Automatic selection and feature extraction of motor-evoked potentials by transcranial magnetic stimulation in stroke patients. Med Biol Eng Comput 59, 449–456 (2021). https://doi.org/10.1007/s11517-021-02315-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11517-021-02315-z

Keywords

Navigation