Skip to main content

Advertisement

Log in

Genetic interactions effects for cancer disease identification using computational models: a review

  • Review Article
  • Published:
Medical & Biological Engineering & Computing Aims and scope Submit manuscript

Abstract

Genome-wide association studies (GWAS) provide clear insight into understanding genetic variations and environmental influences responsible for various human diseases. Cancer identification through genetic interactions (epistasis) is one of the significant ongoing researches in GWAS. The growth of the cancer cell emerges from multi-locus as well as complex genetic interaction. It is impractical for the physician to detect cancer via manual examination of SNPs interaction. Due to its importance, several computational approaches have been modeled to infer epistasis effects. This article includes a comprehensive and multifaceted review of all relevant genetic studies published between 2001 and 2020. In this contemporary review, various computational methods are as follows: multifactor dimensionality reduction–based approaches, statistical strategies, machine learning, and optimization-based techniques are carefully reviewed and presented with their evaluation results. Moreover, these computational approaches’ strengths and limitations are described. The issues behind the computational methods for identifying the cancer disease through genetic interactions and the various evaluation parameters used by researchers have been analyzed. This review is highly beneficial for researchers and medical professionals to learn techniques adapted to discover the epistasis and aids to design novel automatic epistasis detection systems with strong robustness and maximum efficiency to address the different research problems in finding practical solutions effectively.

Graphical abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15

Similar content being viewed by others

References

  1. National Cancer I (2007) What is cancer? In: Cancer.gov. www.cancer.gov/about-cancer/understanding/what-is-cancer

  2. Guan X (2015) Cancer metastases: challenges and opportunities. Acta Pharm Sin B 5:402–418. https://doi.org/10.1016/j.apsb.2015.07.005

    Article  PubMed  PubMed Central  Google Scholar 

  3. Barnes JL, Zubair M, John K, Poirier MC, Martin FL (2018) Carcinogens and DNA damage. Biochem Soc Trans 46:1213–1224. https://doi.org/10.1042/BST20180519

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. WHO (2019) Cancer. www.who.int/health-topics/cancer#tab=tab_1

  5. Ferlay J, Ervik M, Lam F, Colombet M, Mery L, Piñeros M, Znaor A, Soerjomataram I BF (2018) Global cancer observatory: cancer today. In: Int. Agency Res. Cancer. https://gco.iarc.fr/today

  6. Visscher PM, Brown MA, McCarthy MI, Yang J (2012) Five years of GWAS discovery. Am J Hum Genet 90:7–24. https://doi.org/10.1016/j.ajhg.2011.11.029

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Niel C, Sinoquet C, Dina C, Rocheleau G (2015) A survey about methods dedicated to epistasis detection. Front Genet 6:6. https://doi.org/10.3389/fgene.2015.00285

    Article  CAS  Google Scholar 

  8. National Cancer I (2017) Genetics. In: Cancer.gov. https://www.cancer.gov/about-cancer/causes-prevention/genetics

  9. Moore JH, Williams SM (2002) New strategies for identifying gene-gene interactions in hypertension. Ann Med 34:88–95. https://doi.org/10.1080/07853890252953473

    Article  CAS  PubMed  Google Scholar 

  10. Talseth-Palmer BA, Scott RJ (2011) Genetic variation and its role in malignancy. Int J Biomed Sci 7:158–171

    CAS  PubMed  PubMed Central  Google Scholar 

  11. Altshuler D, Gibbs R, Peltonen L et al (2010) Integrating common and rare genetic variation in diverse human populations. Nature 467:52–58. https://doi.org/10.1038/nature09298

    Article  CAS  PubMed  Google Scholar 

  12. García-González I, López-Díaz RI, Canché-Pech JR et al (2018) Epistasis analysis of metabolic genes polymorphisms associated with ischemic heart disease in Yucatan. Clín Investig Arterioscler (English Ed) 30:102–111. https://doi.org/10.1016/j.artere.2017.11.004

    Article  Google Scholar 

  13. Genetics Home Reference (2018) What are single nucleotide polymorphisms (SNPs)? https://ghr.nlm.nih.gov/primer/genomicresearch/snp

  14. Wienbrandt L, Kassens J, Hübenthal M, Ellinghaus D (2017) fast genome-wide third-order SNP interaction tests with information gain on a low-cost heterogeneous parallel FPGA-GPU computing architecture. Procedia Comput Sci 108:596–605. https://doi.org/10.1016/j.procs.2017.05.210

    Article  Google Scholar 

  15. Roy T, Bhattacharjee P (2020) Performance analysis of melanoma classifier using electrical modeling technique. Med Biol Eng Comput 58:2443–2454. https://doi.org/10.1007/s11517-020-02241-6

    Article  PubMed  Google Scholar 

  16. Roy T, Bhattacharjee P (2020) A LabVIEW-based real-time modeling approach for detection of abnormalities in cancer cells. Gene Reports 20:100788. https://doi.org/10.1016/j.genrep.2020.100788

    Article  Google Scholar 

  17. Roy T (2019) Analysis of cancer gene attributes using electrical sensor. Gene 685:62–69. https://doi.org/10.1016/j.gene.2018.10.073

    Article  CAS  PubMed  Google Scholar 

  18. WHO Genetics in Prevention and Treatment of Cancer. https://www.who.int/genomics/about/Cancer.pdf

  19. Ritchie MD, Hahn LW, Roodi N, Bailey LR, Dupont WD, Parl FF, Moore JH (2001) Multifactor-dimensionality reduction reveals high-order interactions among estrogen-metabolism genes in sporadic breast cancer. Am J Hum Genet 69:138–147. https://doi.org/10.1086/321276

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Moore J, Gilbert J, Tsai C-T et al (2006) A flexible computational framework for detecting, characterizing, and interpreting statistical patterns of epistasis in genetic studies of human disease susceptibility. J Theor Biol 241:252–261. https://doi.org/10.1016/j.jtbi.2005.11.036

    Article  PubMed  Google Scholar 

  21. Manuguerra M, Matullo G, Veglia F, Autrup H, Dunning AM, Garte S, Gormally E, Malaveille C, Guarrera S, Polidoro S, Saletta F, Peluso M, Airoldi L, Overvad K, Raaschou-Nielsen O, Clavel-Chapelon F, Linseisen J, Boeing H, Trichopoulos D, Kalandidi A, Palli D, Krogh V, Tumino R, Panico S, Bueno-de-Mesquita HB, Peeters PH, Lund E, Pera G, Martinez C, Amiano P, Barricarte A, Tormo MJ, Quiros JR, Berglund G, Janzon L, Jarvholm B, Day NE, Allen NE, Saracci R, Kaaks R, Ferrari P, Riboli E, Vineis P (2007) Multi-factor dimensionality reduction applied to a large prospective investigation on gene-gene and gene-environment interactions. Carcinogenesis 28:414–422. https://doi.org/10.1093/carcin/bgl159

    Article  CAS  PubMed  Google Scholar 

  22. Cao G, Lu H, Feng J, Shu J, Zheng D, Hou Y (2008) Lung cancer risk associated with thr495pro polymorphism of GHR in chines population. Jpn J Clin Oncol 38:308–316. https://doi.org/10.1093/jjco/hyn007

    Article  PubMed  Google Scholar 

  23. Milne RI, Fagerholm R, Nevanlinna H, BenÍtez J (2008) The importance of replication in gene-gene interaction studies: multifactor dimensionality reduction applied to a two-stage breast cancer case-control study. Carcinogenesis 29:1215–1218. https://doi.org/10.1093/carcin/bgn120

    Article  CAS  PubMed  Google Scholar 

  24. Pattin KA, White BC, Barney N, Gui J, Nelson HH, Kelsey KT, Andrew AS, Karagas MR, Moore JH (2009) A computationally efficient hypothesis testing method for epistasis analysis using multifactor dimensionality reduction. Genet Epidemiol 33:87–94. https://doi.org/10.1002/gepi.20360

    Article  PubMed  PubMed Central  Google Scholar 

  25. Huo X, Lu C, Huang X, Hu Z, Jin G, Ma H, Wang X, Qin J, Wang X, Shen H, Tang J (2009) Polymorphisms in BRCA1, BRCA1-interacting genes and susceptibility of breast cancer in Chinese women. J Cancer Res Clin Oncol 135:1569–1575. https://doi.org/10.1007/s00432-009-0604-6

    Article  CAS  PubMed  Google Scholar 

  26. Gui J, Andrew AS, Andrews P, Nelson HM, Kelsey KT, Karagas MR, Moore JH (2010) A simple and computationally efficient sampling approach to covariate adjustment for multifactor dimensionality reduction analysis of epistasis. Hum Hered 70:219–225. https://doi.org/10.1159/000319175

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Wu Y, Zhang L, Liu L et al (2011) A multifactor dimensionality reduction-logistic regression model of gene polymorphisms and an environmental interaction analysis in cancer research. Asian Pac J Cancer Prev 12:2887–2892

    PubMed  Google Scholar 

  28. Landa I, Boullosa C, Inglada-Pérez L, Sastre-Perona A, Pastor S, Velázquez A, Mancikova V, Ruiz-Llorente S, Schiavi F, Marcos R, Malats N, Opocher G, Diaz-Uriarte R, Santisteban P, Valencia A, Robledo M (2013) An epistatic Interaction between the PAX8 and STK17B genes in papillary thyroid cancer susceptibility. PLoS One 8:e74765. https://doi.org/10.1371/journal.pone.0074765

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Mostowska A, Sajdak S, Pawlik P, Lianeri M, Jagodzinski PP (2013) DNMT1, DNMT3A and DNMT3B gene variants in relation to ovarian cancer risk in the Polish population. Mol Biol Rep 40:4893–4899. https://doi.org/10.1007/s11033-013-2589-0

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Luzón-Toro B, Bleda M, Navarro E, García-Alonso L, Ruiz-Ferrer M, Medina I, Martín-Sánchez M, Gonzalez CY, Fernández RM, Torroglosa A, Antiñolo G, Dopazo J, Borrego S (2015) Identification of epistatic interactions through genome-wide association studies in sporadic medullary and juvenile papillary thyroid carcinomas. BMC Med Genet 8:1–9. https://doi.org/10.1186/s12920-015-0160-7

    Article  CAS  Google Scholar 

  31. Marcus MW, Raji OY, Duffy SW et al (2016) Incorporating epistasis interaction of genetic susceptibility single nucleotide polymorphisms in a lung cancer risk prediction model. Int J Oncol 49:361–370. https://doi.org/10.3892/ijo.2016.3499

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Gui J, Andrew AS, Andrews P, Nelson HM, Kelsey KT, Karagas MR, Moore JH (2011) A robust multifactor dimensionality reduction method for detecting gene-gene interactions with application to the genetic analysis of bladder cancer susceptibility. Ann Hum Genet 75:20–28. https://doi.org/10.1111/j.1469-1809.2010.00624.x

    Article  PubMed  Google Scholar 

  33. Gui J, Moore JH, Kelsey KT, Marsit CJ, Karagas MR, Andrew AS (2011) A novel survival multifactor dimensionality reduction method for detecting gene-gene interactions with application to bladder cancer prognosis. Hum Genet 129:101–110. https://doi.org/10.1007/s00439-010-0905-5

    Article  PubMed  Google Scholar 

  34. Luyapan J, Ji X, Zhu D, et al (2019) An efficient survival multifactor dimensionality reduction method for detecting gene-gene interactions of lung cancer onset age. Proc - 2018 IEEE Int Conf Bioinforma Biomed BIBM 2018 2779–2781. https://doi.org/10.1109/BIBM.2018.8621534

  35. Fu OY, Chang HW, Da Lin Y et al (2016) Breast cancer-associated high-order SNP-SNP interaction of CXCL12/CXCR4-related genes by an improved multifactor dimensionality reduction (MDR-ER). Oncol Rep 36:1739–1747. https://doi.org/10.3892/or.2016.4956

    Article  CAS  PubMed  Google Scholar 

  36. Li CF, Luo FT, Zeng YX, Jia WH (2014) Weighted risk score-based multifactor dimensionality reduction to detect gene-gene interactions in nasopharyngeal carcinoma. Int J Mol Sci 15:10724–10737. https://doi.org/10.3390/ijms150610724

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Cao X, Yu G, Ren W, Guo M, Wang J (2020) DualWMDR: detecting epistatic interaction with dual screening and multifactor dimensionality reduction. Hum Mutat 41:719–734. https://doi.org/10.1002/humu.23951

    Article  CAS  PubMed  Google Scholar 

  38. Park M, Lee J, Park T, Lee S (2020) Gene-gene interaction analysis for the survival phenotype based on the Kaplan-Meier median estimate. Biomed Res Int 2020:1–10. https://doi.org/10.1155/2020/5282345

    Article  CAS  Google Scholar 

  39. Musani S, Shriner D, Liu N et al (2007) Detection of gene × gene interactions in genome-wide association studies of human population data. Hum Hered 63:67–84. https://doi.org/10.1159/000099179

    Article  CAS  PubMed  Google Scholar 

  40. Fritsch A, Ickstadt K (2007) Comparing logic regression based methods for identifying SNP interactions. Lect Notes Comput Sci 4414 LNBI:90–103. https://doi.org/10.1007/978-3-540-71233-6_8

    Article  Google Scholar 

  41. Schwender H, Ickstadt K (2008) Identification of SNP interactions using logic regression. Biostatistics 9:187–198. https://doi.org/10.1093/biostatistics/kxm024

    Article  PubMed  Google Scholar 

  42. Wei Z, Li M, Rebbeck T, Li H (2008) U-statistics-based tests for multiple genes in genetic association studies. Ann Hum Genet 72:821–833. https://doi.org/10.1111/j.1469-1809.2008.00473.x

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Wang T, Ho G, Ye K, Strickler H, Elston RC (2009) A partial least-square approach for modeling gene-gene and gene-environment interactions when multiple markers are genotyped. Genet Epidemiol 33:6–15. https://doi.org/10.1002/gepi.20351

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Lin C, Chu CM, Su SL (2016) Epistasis test in meta-analysis: a multi-parameter Markov chain Monte Carlo model for consistency of evidence. PLoS One 11:1–17. https://doi.org/10.1371/journal.pone.0152891

    Article  CAS  Google Scholar 

  45. Che K, Liu X, Guo M, et al (2017) Epistasis detection using a permutation-based gradient boosting machine. Proc - 2016 IEEE Int Conf Bioinforma Biomed BIBM 2016 1247–1252. https://doi.org/10.1109/BIBM.2016.7822697

  46. Stanislas V, Dalmasso C, Ambroise C (2017) Eigen-epistasis for detecting gene-gene interactions. BMC Bioinform 18:1–14. https://doi.org/10.1186/s12859-017-1488-0

    Article  CAS  Google Scholar 

  47. Matlak D, Szczurek E (2017) Epistasis in genomic and survival data of cancer patients. PLoS Comput Biol 13:1–16. https://doi.org/10.1371/journal.pcbi.1005626

    Article  CAS  Google Scholar 

  48. Dorani (2018) A genetic algorithm for community. Appl Evol Comput:159–170. https://doi.org/10.1007/978-3-319-77538-8

  49. Muellner MK, Duernberger G, Ganglberger F, Kerzendorfer C, Uras IZ, Schoenegger A, Bagienski K, Colinge J, Nijman SMB (2014) TOPS: a versatile software tool for statistical analysis and visualization of combinatorial gene-gene and gene-drug interaction screens. BMC Bioinform 15. https://doi.org/10.1186/1471-2105-15-98

  50. Li J, Li H, Lv X et al (2018) Polymorphism in lncRNA AC016683.6 and its interaction with smoking exposure on the susceptibility of lung cancer. Cancer Cell Int 18:2. https://doi.org/10.1186/s12935-018-0591-2

    Article  CAS  Google Scholar 

  51. Ghorbian S, M. N, S. T et al (2018) Association of genetic variations in XRCC1 and ERCC1 genes with sporadic breast cancer. Gene, Cell Tissue 5:e80166. https://doi.org/10.5812/gct.80166

    Article  Google Scholar 

  52. Xue W, Mengyun W, Li Z et al (2018) Genetic variants within MTORC1 genes predict gastric cancer prognosis in Chinese populations. J Cancer 9:1448–1454. https://doi.org/10.7150/jca.23566

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Gunathilake MN, Lee J, Cho YA et al (2018) Interaction between physical activity, PITX1 rs647161 genetic polymorphism and colorectal cancer risk in a Korean population: a case-control study. Oncotarget 9:7590–7603. https://doi.org/10.18632/oncotarget.24136

    Article  PubMed  PubMed Central  Google Scholar 

  54. Hind J, Lisboa P, Hussain A, Al-Jumeily D (2019) A novel approach to detecting epistasis using random sampling regularisation. IEEE/ACM Trans Comput Biol Bioinforma PP:1. https://doi.org/10.1109/TCBB.2019.2948330

  55. Catalano C, da Silva Filho MI, Frank C et al (2020) Epistatic effect of TLR3 and cGAS-STING-IKKε-TBK1-IFN signaling variants on colorectal cancer risk. Cancer Med 9:1473–1484. https://doi.org/10.1002/cam4.2804

    Article  CAS  PubMed  Google Scholar 

  56. Li H, Duan N, Zhang Q, Shao Y (2019) IL1A & IL1B genetic polymorphisms are risk factors for thyroid cancer in a Chinese Han population. Int Immunopharmacol 76:105869. https://doi.org/10.1016/j.intimp.2019.105869

    Article  CAS  PubMed  Google Scholar 

  57. Li W, Jia M, Wang J, Lu J, Deng J, Tang J, Liu C (2019) Association of MMP9-1562C/T and MMP13-77A/G polymorphisms with non-small cell lung cancer in southern Chinese population. Biomolecules 9. https://doi.org/10.3390/biom9030107

  58. Sastre Tomas J, Cardenas J, Heine Suñer D, Capriotti E (2018) Detecting cancer-associated epistatic gene variants in lung adenocarcinoma

  59. Li Y, Xiao X, Bossé Y et al (2019) Genetic interaction analysis among oncogenesis-related genes revealed novel genes and networks in lung cancer development. Oncotarget 10:1760–1774. https://doi.org/10.18632/oncotarget.26678

    Article  PubMed  PubMed Central  Google Scholar 

  60. Tang D, Liu H, Zhao Y, Qian D, Luo S, Patz EF Jr, Su L, Shen S, ChristianI D, Gao W, Wei Q (2020) Genetic variants of BIRC3 and NRG1 in the NLRP3 inflammasome pathway are associated with non-small cell lung cancer survival. Am J Cancer Res 10:2582–2595

    CAS  PubMed  PubMed Central  Google Scholar 

  61. Wu Y, Yang S, Liu H, Luo S, Stinchcombe TE, Glass C, Su L, Shen S, Christiani DC, Wang Q, Wei Q (2020) Novel genetic variants of KIR3DL2 and PVR involved in immunoregulatory interactions are associated with non-small cell lung cancer survival. Am J Cancer Res 10:1770–1784

    CAS  PubMed  PubMed Central  Google Scholar 

  62. Kudhair B, Alabid N, Zayed K et al (2020) The correlation of combined OGG1, CYP1A1 and GSTP1 gene variants and risk of lung cancer of male Iraqi waterpipe tobacco smokers. Mol Biol Rep 47. https://doi.org/10.1007/s11033-020-05589-y

  63. Haoyu Z, Zhao N, Ahearn T, et al (2018) A mixed-model approach for powerful testing of genetic associations with cancer risk incorporating tumor characteristics

  64. Kapoor PM, Lindström S, Behrens S, Wang X, Michailidou K, Bolla MK, Wang Q, Dennis J, Dunning AM, Pharoah PDP, Schmidt MK, Kraft P, García-Closas M, Easton DF, Milne RL, Chang-Claude J, on behalf of Breast Cancer Association Consortium (2020) Assessment of interactions between 205 breast cancer susceptibility loci and 13 established risk factors in relation to breast cancer risk, in the Breast Cancer Association Consortium. Int J Epidemiol 49:216–232. https://doi.org/10.1093/ije/dyz193

    Article  PubMed  Google Scholar 

  65. Rahmani F, Hasanzadeh M, Hassanian S et al (2020) Association of a genetic variant in the angiopoietin-like protein 4 gene with cervical cancer. Pathol Res Pract 216:153011. https://doi.org/10.1016/j.prp.2020.153011

    Article  CAS  PubMed  Google Scholar 

  66. Fan Y, Gu X, Pan H, Dai Z, Zou C, Gao Z, Zhang H (2020) Association of genetic polymorphisms in TNFRSF11 with the Progression of Genetic Susceptibility to Gastric Cancer. J Oncol 2020:1–9. https://doi.org/10.1155/2020/4103264

    Article  CAS  Google Scholar 

  67. Andrew AS, Hu T, Gu J et al (2012) HSD3B and gene-gene interactions in a pathway-based analysis of genetic susceptibility to bladder cancer. PLoS One 7. https://doi.org/10.1371/journal.pone.0051301

  68. Hu T, Andrew AS, Karagas MR, Moore JH (2015) Functional dyadicity and heterophilicity of gene-gene interactions in statistical epistasis networks. BioData Min 8:1–11. https://doi.org/10.1186/s13040-015-0062-4

    Article  CAS  Google Scholar 

  69. Hu T, Sinnott-Armstrong NA, Kiralis JW, Andrew AS, Karagas MR, Moore JH (2011) Characterizing genetic interactions in human disease association studies using statistical epistasis networks. BMC Bioinform 12:364. https://doi.org/10.1186/1471-2105-12-364

    Article  CAS  Google Scholar 

  70. Hu T, Pan Q, Andrew AS, Langer JM, Cole MD, Tomlinson CR, Karagas MR, Moore JH (2014) Functional genomics annotation of a statistical epistasis network associated with bladder cancer susceptibility. BioData Min 7:1–9. https://doi.org/10.1186/1756-0381-7-5

    Article  CAS  Google Scholar 

  71. Larson NB, Jenkins GD, Larson MC et al (2014) Kernel canonical correlation analysis for assessing gene-gene interactions and application to ovarian cancer. Eur J Hum Genet 22:126–131. https://doi.org/10.1038/ejhg.2013.69

    Article  CAS  PubMed  Google Scholar 

  72. Wakefield J, De Vocht F, Hung RJ (2010) Bayesian mixture modeling of gene-environment and gene-gene interactions. Genet Epidemiol 34:16–25. https://doi.org/10.1002/gepi.20429

    Article  PubMed  PubMed Central  Google Scholar 

  73. Anunciação O, Vinga S, Oliveira AL (2013) Using Information Interaction to discover epistatic effects in complex diseases. PLoS One 8:e76300. https://doi.org/10.1371/journal.pone.0076300

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  74. Fan R, Zhong M, Wang S, Zhang Y, Andrew A, Karagas M, Chen H, Amos CI, Xiong M, Moore JH (2011) Entropy-based information gain approaches to detect and to characterize gene-gene and gene-environment interactions/correlations of complex diseases. Genet Epidemiol 35:706–721. https://doi.org/10.1002/gepi.20621

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  75. Talluri R, Shete S (2015) Evaluating methods for modeling epistasis networks with application to head and neck cancer. Cancer Informat 14:17–23. https://doi.org/10.4137/CIN.S17289

    Article  Google Scholar 

  76. Tian XW, Lim JS (2015) Interactive naive Bayesian network: a new approach of constructing gene-gene interaction network for cancer classification. Biomed Mater Eng 26:S1929–S1936. https://doi.org/10.3233/BME-151495

    Article  CAS  PubMed  Google Scholar 

  77. Zeng Z, Jiang X, Neapolitan R (2016) Discovering causal interactions using Bayesian network scoring and information gain. BMC Bioinform 17:1–14. https://doi.org/10.1186/s12859-016-1084-8

    Article  Google Scholar 

  78. Assareh A, Volkert LG, Li J (2012) Interaction trees: optimizing ensembles of decision trees for gene-gene interaction detections. In: 2012 11th International Conference on Machine Learning and Applications. pp 616–621

  79. Cook NR, Zee RYL, Ridker PM (2004) Tree and spline based association analysis of gene-gene interaction models for ischemic stroke. Stat Med 23:1439–1453. https://doi.org/10.1002/sim.1749

    Article  PubMed  Google Scholar 

  80. Lin HY, Wang W, Liu YH, Soong SJ, York TP, Myers L, Hu JJ (2008) Comparison of multivariate adaptive regression splines and logistic regression in detecting SNP-SNP interactions and their application in prostate cancer. J Hum Genet 53:802–811. https://doi.org/10.1007/s10038-008-0313-z

    Article  PubMed  Google Scholar 

  81. Wolf BJ, Hill EG, Slate EH, Neumann CA, Kistner-Griffin E (2012) LBoost: a boosting algorithm with application for epistasis discovery. PLoS One 7:1–8. https://doi.org/10.1371/journal.pone.0047281

    Article  CAS  Google Scholar 

  82. Wu X, Tang H, Guan A, Sun F, Wang H, Shu J (2016) Finding gastric cancer related genes and clinical biomarkers for detection based on gene-gene interaction network. Math Biosci 276:1–7. https://doi.org/10.1016/j.mbs.2015.12.001

    Article  CAS  PubMed  Google Scholar 

  83. Li J, Malley JD, Andrew AS, Karagas MR, Moore JH (2016) Detecting gene-gene interactions using a permutation-based random forest method. BioData Min 9:1–17. https://doi.org/10.1186/s13040-016-0093-5

    Article  CAS  Google Scholar 

  84. Dorani F, Hu T, Woods MO, Zhai G (2018) Ensemble learning for detecting gene-gene interactions in colorectal cancer. PeerJ 6:e5854. https://doi.org/10.7717/peerj.5854

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  85. Zhu R, Zhao H, Ma S (2014) Identifying gene-environment and gene-gene interactions using a progressive penalization approach. Genet Epidemiol 38:353–368. https://doi.org/10.1002/gepi.21807

    Article  PubMed  PubMed Central  Google Scholar 

  86. Wu M, Huang J, Ma S (2018) Identifying gene-gene interactions using penalized tensor regression. Stat Med 37:598–610. https://doi.org/10.1002/sim.7523

    Article  PubMed  Google Scholar 

  87. Auton A, Abecasis G, Durbin RM et al (2015) A global reference for human genetic variation. Nature 526:68–74

    Article  PubMed  Google Scholar 

  88. Visscher PM, Wray NR, Zhang Q, Sklar P, McCarthy MI, Brown MA, Yang J (2017) 10 Years of GWAS discovery: biology, function, and translation. Am J Hum Genet 101:5–22. https://doi.org/10.1016/j.ajhg.2017.06.005

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  89. Dasgupta A, Sun Y, König I et al (2011) Brief review of regression-based and machine learning methods in genetic epidemiology: the genetic analysis workshop 17 experience. Genet Epidemiol 35(Suppl 1):S5–S11. https://doi.org/10.1002/gepi.20642

    Article  PubMed  PubMed Central  Google Scholar 

  90. Xu C, Jackson S (2019) Machine learning and complex biological data. Genome Biol 20:76. https://doi.org/10.1186/s13059-019-1689-0

    Article  PubMed  PubMed Central  Google Scholar 

  91. Okser S, Pahikkala T, Airola A, Salakoski T, Ripatti S, Aittokallio T (2014) Regularized machine learning in the genetic prediction of complex traits. PLoS Genet 10:e1004754

    Article  PubMed  PubMed Central  Google Scholar 

  92. Abraham G, Inouye M (2015) Genomic risk prediction of complex human disease and its clinical application. Curr Opin Genet Dev 33:10–16. https://doi.org/10.1016/j.gde.2015.06.005

    Article  CAS  PubMed  Google Scholar 

  93. Chen XW, Kim S, Wu C, Xu D (2009) 2009 IEEE International Conference on Bioinformatics and Biomedicine, BIBM 2009: Preface. 2009 IEEE Int Conf Bioinforma Biomed BIBM 2009. https://doi.org/10.1109/BIBM.2009.4

  94. Bhattacharjee S, Wang Z, Ciampa J, Kraft P, Chanock S, Yu K, Chatterjee N (2010) Using principal components of genetic variation for robust and powerful detection of gene-gene interactions in case-control and case-only studies. Am J Hum Genet 86:331–342. https://doi.org/10.1016/j.ajhg.2010.01.026

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  95. Seal DB, Saha S, Chatterjee M, et al (2016) Gene - gene interaction: a clustering, correlation & entropy based approach. 2016 IEEE 7th Annu Ubiquitous Comput Electron Mob Commun Conf UEMCON 2016. https://doi.org/10.1109/UEMCON.2016.7777833

  96. Bornelöv S, Marillet S, Komorowski J (2014) Ciruvis: a web-based tool for rule networks and interaction detection using rule-based classifiers. BMC Bioinform 15:1–12. https://doi.org/10.1186/1471-2105-15-139

    Article  Google Scholar 

  97. Uppu S, Krishna A, Gopalan RP (2016) A deep learning approach to detect SNP interactions. J Softw 11:965–975. https://doi.org/10.17706/jsw.11.10.965-975

    Article  Google Scholar 

  98. Cao X, Yu G, Liu J, Jia L, Wang J (2018) ClusterMI: Detecting High-Order SNP Interactions Based on Clustering and Mutual Information. Int J Mol Sci 19:19. https://doi.org/10.3390/ijms19082267

    Article  CAS  Google Scholar 

  99. Kim D, Li R, Dudek SM, Frase AT, Pendergrass SA, Ritchie MD (2014) Knowledge-driven genomic interactions: an application in ovarian cancer. BioData Min 7:1–11. https://doi.org/10.1186/1756-0381-7-20

    Article  Google Scholar 

  100. Zhang L, Liu H, Huang Y, Wang X, Chen Y, Meng J (2017) Cancer progression prediction using gene interaction regularized elastic net. IEEE/ACM Trans Comput Biol Bioinforma 14:145–154. https://doi.org/10.1109/TCBB.2015.2511758

    Article  CAS  Google Scholar 

  101. Yung L, Yang C, Wan X, Yu W (2011) GBOOST: a GPU-based tool for detecting gene-gene interactions in genome-wide case control studies. Bioinformatics 27:1309–1310. https://doi.org/10.1093/bioinformatics/btr114

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  102. Yang CH, Yang HS, Chuang LY (2019) PBMDR: a particle swarm optimization-based multifactor dimensionality reduction for the detection of multilocus interactions. J Theor Biol 461:68–75. https://doi.org/10.1016/j.jtbi.2018.10.012

    Article  CAS  PubMed  Google Scholar 

  103. Yang CH, Chuang LY, Chen YJ, Tseng HF, Chang HW (2011) Computational analysis of simulated SNP interactions between 26 growth factor-related genes in a breast cancer association study. Omi A J Integr Biol 15:399–407. https://doi.org/10.1089/omi.2010.0028

    Article  CAS  Google Scholar 

  104. Nunkesser R, Bernholt T, Schwender H, Ickstadt K, Wegener I (2007) Detecting high-order interactions of single nucleotide polymorphisms using genetic programming. Bioinformatics 23:3280–3288. https://doi.org/10.1093/bioinformatics/btm522

    Article  CAS  PubMed  Google Scholar 

  105. Ou-Yang F, Da Lin Y, Chuang LY et al (2015) The combinational polymorphisms of ORAI1 gene are associated with preventive models of breast cancer in the Taiwanese. Biomed Res Int 2015. https://doi.org/10.1155/2015/281263

  106. Wang X, Peng Q, Fan Y (2016) Detecting susceptibility to breast cancer with SNP-SNP interaction using BPSOHS and emotional neural networks. Biomed Res Int 2016:1–7. https://doi.org/10.1155/2016/5164347

    Article  CAS  Google Scholar 

  107. Liu J, Yu G, Jiang Y, Wang J (2017) HiSeeker: detecting high-order SNP interactions based on pairwise SNP combinations. Genes (Basel) 8:2–19. https://doi.org/10.3390/genes8060153

    Article  CAS  Google Scholar 

  108. Li X, Zhang S, Wong KC (2018) Nature-inspired multiobjective epistasis elucidation from genome-wide association studies. IEEE/ACM Trans Comput Biol Bioinforma 1–12. https://doi.org/10.1109/TCBB.2018.2849759

  109. Baryshnikova A, Costanzo M, Myers CL, Andrews B, Boone C (2013) Genetic interaction networks: toward an understanding of heritability. Annu Rev Genomics Hum Genet 14:111–133. https://doi.org/10.1146/annurev-genom-082509-141730

    Article  CAS  PubMed  Google Scholar 

  110. Mair B, Moffat J, Boone C, Andrews BJ (2019) Genetic interaction networks in cancer cells. Curr Opin Genet Dev 54:64–72. https://doi.org/10.1016/j.gde.2019.03.002

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  111. Montojo J, Zuberi K, Rodriguez H et al (2014) GeneMANIA: fast gene network construction and function prediction for Cytoscape. F1000Research 3:153. https://doi.org/10.12688/f1000research.4572.1

    Article  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to R. Manavalan.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

ESM 1

(DOCX 24 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Manavalan, R., Priya, S. Genetic interactions effects for cancer disease identification using computational models: a review. Med Biol Eng Comput 59, 733–758 (2021). https://doi.org/10.1007/s11517-021-02343-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11517-021-02343-9

Keywords

Navigation