Skip to main content

Advertisement

Log in

Parametric-based feature selection via spherical harmonic coefficients for the left ventricle myocardial infarction screening

  • Original Article
  • Published:
Medical & Biological Engineering & Computing Aims and scope Submit manuscript

Abstract

Computer-aided diagnosis (CAD) of heart diseases using machine learning techniques has recently received much attention. In this study, we present a novel parametric-based feature selection method using the three-dimensional spherical harmonic (SHs) shape descriptors of the left ventricle (LV) for intelligent myocardial infarction (MI) classification. The main hypothesis is that the SH coefficients of the parameterized endocardial shapes in MI patients are recognizable and distinguishable from healthy subjects. The SH parameterization, expansion, and registration of the LV endocardial shapes were performed, then parametric-based features were extracted. The proposed method performance was investigated by varying considered phases (i.e., the end-systole (ES) or the end-diastole (ED) frames), the spatial alignment procedures based on three modes (i.e., the center of the apical (CoA), the center of mass (CoM), and the center of the basal (CoB)), and considered orders of SH coefficients. After applying principal component analysis (PCA) on the feature vectors, support vector machine (SVM), K-nearest neighbors (K-NN), and random forest (RF) were trained and tested using the leave-one-out cross-validation (LOOCV). The proposed method validation was performed via a dataset containing healthy and MI subjects selected from the automated cardiac diagnosis challenge (ACDC) database. The promising results show the effectiveness of the proposed classification model. SVM reached the best performance with accuracy, sensitivity, specificity, and F-score of 97.50%, 95.00%, 100.00%, and 97.56%, respectively, using the introduced optimum feature set. This study demonstrates the robustness of combining the SH coefficients and machine learning techniques. We also quantify and notably highlight the contribution of different parameters in the classification and finally introduce an optimal feature set with maximum discriminant strength for the MI classification task. Moreover, the obtained results confirm that the proposed method performs more accurately than conventional point-based methods and also the current start-of-the-art, i.e., clinical measures. We showed our method’s generalizability using employing it in dilated cardiomyopathy (DCM) detection and achieving promising results too.

Graphical abstract

Parametric-based feature selection via spherical harmonics coefficients for the left ventricle myocardial infarction screening

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13

Similar content being viewed by others

References

  1. Ablin P, Siddiqi K (2015) Detecting myocardial infarction using medial surfaces. In: Statistical atlases and computational models of the heart. Springer, pp 146–153

  2. Afzali A, Mofrad FB, Pouladian M (2018) Inter-patient modelling of 2D lung variations from chest X-ray imaging via Fourier descriptors. J Med Syst 42:233

    Article  PubMed  Google Scholar 

  3. Afzali A, Mofrad FB, Pouladian M (2020) Contour-based lung shape analysis in order to tuberculosis detection: modeling and feature description. Med Biol Eng Comput 58:1965–1986

  4. Allen J, Zacur E, Dall’Armellina E, Lamata P, Grau V (2015) Myocardial infarction detection from left ventricular shapes using a random forest. In: Statistical atlases and computational models of the heart. Springer, pp 180–189

  5. Andreopoulos A, Tsotsos JK (2008) Efficient and generalizable statistical models of shape and appearance for analysis of cardiac MRI. Med Image Anal 12:335–357

    Article  PubMed  Google Scholar 

  6. Aspert N, Santa-Cruz D, Ebrahimi T (2002) Mesh: Measuring errors between surfaces using the hausdorff distance. In: Proceedings. IEEE international conference on multimedia and expo. IEEE, pp 705–708

  7. Ataer-Cansizoglu E, Bas E, Kalpathy-Cramer J, Sharp GC, Erdogmus D (2013) Contour-based shape representation using principal curves. Pattern Recogn 46:1140–1150

    Article  Google Scholar 

  8. Ayari R, Abdallah AB, Ghorbel F, Bedoui MH (2015) Local deformation analysis of the heart left ventricle using SPHARM descriptors and modified hotelling T2 metric. In: 2015 38th International Conference on Telecommunications and Signal Processing (TSP). IEEE, pp 1–4

  9. Baessler B, Mannil M, Oebel S, Maintz D, Alkadhi H, Manka R (2018) Subacute and chronic left ventricular myocardial scar: accuracy of texture analysis on nonenhanced cine MR images. Radiology 286:103–112

    Article  PubMed  Google Scholar 

  10. Bai W, Oktay O, Rueckert D (2015) Classification of myocardial infarcted patients by combining shape and motion features. In: Statistical atlases and computational models of the heart. Springer, pp 140–145

  11. Bergamasco LCC, Rochitte CE, Nunes FL (2018) 3D medical objects processing and retrieval using spherical harmonics: a case study with congestive heart failure MRI exams. In: Proceedings of the 33rd annual ACM symposium on applied computing. ACM, pp 22–29

  12. Bernard O, Lalande A, Zotti C, Cervenansky F, Yang X, Heng P-A, Cetin I, Lekadir K, Camara O, Ballester MAG (2018) Deep learning techniques for automatic MRI cardiac multi-structures segmentation and diagnosis: is the problem solved? IEEE Trans Med Imaging 37:2514–2525

    Article  PubMed  Google Scholar 

  13. Besl PJ, McKay ND (1992) Method for registration of 3-D shapes. In: Sensor fusion IV: control paradigms and data structures. International Society for Optics and Photonics, vol 1611, pp 586–606

  14. Brechbühler C, Gerig G, Kübler O (1995) Parametrization of closed surfaces for 3-D shape description. Comput Vis Image Underst 61:154–170

    Article  Google Scholar 

  15. Breiman L (2001) Random forests. Mach Learn 45:5–32

    Article  Google Scholar 

  16. Caiani EG, Turiel M, Muzzupappa S, Porta A, Baselli G, Pagani M, Cerutti S, Malliani A (2000) Evaluation of respiratory influences on left ventricular function parameters extracted from echocardiographic acoustic quantification. Physiol Meas 21:175

    Article  CAS  PubMed  Google Scholar 

  17. Chen M, Fang L, Zhuang Q, Liu H (2019) Deep learning assessment of myocardial infarction from MR image sequences. IEEE Access 7:5438–5446

    Article  Google Scholar 

  18. Diker A, Cömert Z, Engin A (2017) A diagnostic model for identification of myocardial infarction from electrocardiography signals. Bitlis Eren Univ J Sci Technol 7:132–139

  19. Ehrhardt J, Wilms M, Handels H, Säring D (2015) Automatic detection of cardiac remodeling using global and local clinical measures and random forest classification. In: Statistical atlases and computational models of the heart. Springer, pp 199–207

  20. Frangi AF, Rueckert D, Schnabel JA, Niessen WJ (2002) Automatic construction of multiple-object three-dimensional statistical shape models: application to cardiac modeling. IEEE Trans Med Imaging 21:1151–1166

    Article  PubMed  Google Scholar 

  21. Gjesdal O, Bluemke DA, Lima JA (2011) Cardiac remodeling at the population level—risk factors, screening, and outcomes. Nat Rev Cardiol 8:673

    Article  PubMed  Google Scholar 

  22. Gooya A, Lekadir K, Alba X, Swift AJ, Wild JM, Frangi AF (2015) Joint clustering and component analysis of correspondenceless point sets: application to cardiac statistical modeling. In: International conference on information processing in medical imaging. Springer, pp 98–109

  23. Grevera GJ, Udupa JK (1998) An objective comparison of 3-D image interpolation methods. IEEE Trans Med Imaging 17:642–652

    Article  CAS  PubMed  Google Scholar 

  24. Hastie T, Tibshirani R (1996) Discriminant adaptive nearest neighbor classification and regression. In: Advances in Neural Information Processing Systems, pp 409–415

  25. Herman GT, Zheng J, Bucholtz CA (1992) Shape-based interpolation. IEEE Comput Graph Appl 12:69–79

    Article  Google Scholar 

  26. Hira ZM, Gillies DF (2015) A review of feature selection and feature extraction methods applied on microarray data. Adv Bioinforma 2015:198363

    Article  Google Scholar 

  27. Huang H, Shen L, Zhang R, Makedon F, Saykin A, Pearlman J (2007) A novel surface registration algorithm with biomedical modeling applications. IEEE Trans Inf Technol Biomed 11:474–482

    Article  PubMed  Google Scholar 

  28. Jolliffe I (2011) Principal component analysis. Springer, New York

    Google Scholar 

  29. Kelemen A, Székely G, Gerig G (1999) Elastic model-based segmentation of 3-D neuroradiological data sets. IEEE Trans Med Imaging 18:828–839

    Article  CAS  PubMed  Google Scholar 

  30. Kendall DG (1989) A survey of the statistical theory of shape. Stat Sci 4:87–99

    Google Scholar 

  31. Knapp M (2002) Mesh decimation using VTK. Institute of Computer Graphics and Algorithms, Vienna University of Technology. https://www.cg.tuwien.ac.at/courses/Seminar/SS2002/Knapp_paper.pdf

  32. Kohan Z, Farhidzadeh H, Azmi R, Gholizadeh B (2016) Hippocampus temporal lobe epilepsy detection using a combination of shape-based features and spherical harmonics representation. arXiv preprint arXiv:161200338

  33. Leiner T, Rueckert D, Suinesiaputra A, Baeßler B, Nezafat R, Išgum I, Young AA (2019) Machine learning in cardiovascular magnetic resonance: basic concepts and applications. J Cardiovasc Magn Reson 21:1–14

    Article  Google Scholar 

  34. Liu P, Wang Y, Huang D, Zhang Z, Chen L (2012) Learning the spherical harmonic features for 3-D face recognition. IEEE Trans Image Process 22:914–925

    Article  PubMed  Google Scholar 

  35. Lorensen WE, Cline HE (1987) Marching cubes: a high resolution 3D surface construction algorithm. ACM siggraph computer graphics 21:163–169

    Article  Google Scholar 

  36. Mannil M, von Spiczak J, Manka R, Alkadhi H (2018) Texture analysis and machine learning for detecting myocardial infarction in noncontrast low-dose computed tomography: unveiling the invisible. Invest Radiol 53:338–343

    Article  PubMed  Google Scholar 

  37. Mannil M, Von Spiczak J, Muehlematter UJ, Thanabalasingam A, Keller DI, Manka R, Alkadhi H (2019) Texture analysis of myocardial infarction in CT: comparison with visual analysis and impact of iterative reconstruction. Eur J Radiol 113:245–250

    Article  PubMed  Google Scholar 

  38. Martin-Isla C, Campello VM, Izquierdo C, Raisi-Estabragh Z, Baeßler B, Petersen SE, Lekadir K (2020) Image-based cardiac diagnosis with machine learning: a review. Front Cardiovasc Med 7:1

  39. Mechanic OJ, Grossman SA (2019) Acute myocardial infarction. In: StatPearls [Internet]. StatPearls Publishing

  40. Medyukhina A, Blickensdorf M, Cseresnyés Z, Ruef N, Stein JV, Figge MT (2020) Dynamic spherical harmonics approach for shape classification of migrating cells. Sci Rep 10:1–12

    Article  Google Scholar 

  41. Mofrad FB, Zoroofi RA, Tehrani-Fard AA, Akhlaghpoor S, Sato Y (2014) Classification of normal and diseased liver shapes based on spherical harmonics coefficients. J Med Syst 38:20

    Article  PubMed  Google Scholar 

  42. Golland P, Liang F, Mukherjee S, Panchenko D (2005) Permutation tests for classification. In: International conference on computational learning theory. Springer, pp 501–515

  43. Mukhopadhyay A, Oksuz I, Tsaftaris SA (2015) Supervised learning of functional maps for infarct classification. In: Statistical atlases and computational models of the heart. Springer, pp 162–170

  44. Ojala M, Garriga GC (2010) Permutation tests for studying classifier performance. J Mach Learn Res 11:1833–1863

    Google Scholar 

  45. Parajuli N, Lu A, Duncan JS (2015) Left ventricle classification using active shape model and support vector machine. In: Statistical atlases and computational models of the heart. Springer, pp 154–161

  46. Perperidis D, Mohiaddin R, Rueckert D (2005) Construction of a 4D statistical atlas of the cardiac anatomy and its use in classification. In: International conference on medical image computing and computer-assisted intervention. Springer, pp 402–410

  47. Piazzese C, Carminati MC, Colombo A, Krause R, Potse M, Auricchio A, Weinert L, Tamborini G, Pepi M, Lang RM (2016) Segmentation of the left ventricular endocardium from magnetic resonance images by using different statistical shape models. J Electrocardiol 49:383–391

    Article  PubMed  Google Scholar 

  48. Piras P, Teresi L, Gabriele S, Evangelista A, Esposito G, Varano V, Torromeo C, Nardinocchi P, Puddu PE (2015) Systo-diastolic lv shape analysis by geometric morphometrics and parallel transport highly discriminates myocardial infarction. In: Statistical atlases and computational models of the heart. Springer, pp 119–129

  49. Powers DMW (2011) Evaluation: from precision, recall and F-factor to ROC, informedness, markedness correlation. J Mach Learn Technol 2:37–63

  50. Puyol-Antón E, Ruijsink B, Gerber B, Amzulescu MS, Langet H, De Craene M, Schnabel JA, Piro P, King AP (2018) Regional multi-view learning for cardiac motion analysis: application to identification of dilated cardiomyopathy patients. IEEE Trans Biomed Eng 66:956–966

    Article  PubMed  Google Scholar 

  51. Ravikumar N, Gooya A, Çimen S, Frangi AF, Taylor ZA (2018) Group-wise similarity registration of point sets using Student’s t-mixture model for statistical shape models. Med Image Anal 44:156–176

    Article  PubMed  Google Scholar 

  52. Ritchie DW, Kemp GJ (1999) Fast computation, rotation, and comparison of low resolution spherical harmonic molecular surfaces. J Comput Chem 20:383–395

    Article  CAS  Google Scholar 

  53. Rohé M-M, Duchateau N, Sermesant M, Pennec X (2015) Combination of polyaffine transformations and supervised learning for the automatic diagnosis of LV infarct. In: Statistical atlases and computational models of the heart. Springer, pp 190–198

  54. Roohi SF, Zoroofi RA (2013) 4D statistical shape modeling of the left ventricle in cardiac MR images. Int J Comput Assist Radiol Surg 8:335–351

    Article  Google Scholar 

  55. Scheffler K, Lehnhardt S (2003) Principles and applications of balanced SSFP techniques. Eur Radiol 13:2409–2418

    Article  PubMed  Google Scholar 

  56. Shalbaf A, Behnam H, Alizade-Sani Z, Shojaifard M (2012) Left ventricle wall motion quantification from echocardiographic images by non-rigid image registration. Int J Comput Assist Radiol Surg 7:769–783

    Article  PubMed  Google Scholar 

  57. Shen L, Chung MK (2006) Large-scale modeling of parametric surfaces using spherical harmonics. In: Third International Symposium on 3D Data Processing, Visualization, and Transmission (3DPVT’06). IEEE, pp 294–301

  58. Shen L, Makedon F (2006) Spherical mapping for processing of 3D closed surfaces. Image Vis Comput 24:743–761

    Article  Google Scholar 

  59. Shen L, Ford J, Makedon F, Saykin A (2003) Hippocampal shape analysis: surface-based representation and classification. In: Medical imaging 2003: image processing. International Society for Optics and Photonics, pp 253–264

  60. Shen L, Ford J, Makedon F, Saykin A (2004) A surface-based approach for classification of 3D neuroanatomic structures. Intell Data Anal 8:519–542

  61. Shen L, Huang H, Makedon F, Saykin AJ (2007) Efficient registration of 3D SPHARM surfaces. In: Fourth Canadian Conference on Computer and Robot Vision (CRV’07). IEEE, pp 81–88

  62. Shen L, Farid H, McPeek MA (2009) Modeling three-dimensional morphological structures using spherical harmonics. Evolution 63:1003–1016

  63. Strodthoff N, Strodthoff C (2018) Detecting and interpreting myocardial infarction using fully convolutional neural networks. Physiological measurement

  64. Sudarshan VK, Acharya UR, Ng E, San Tan R, Chou SM, Ghista DN (2016) An integrated index for automated detection of infarcted myocardium from cross-sectional echocardiograms using texton-based features (Part 1). Comput Biol Med 71:231–240

    Article  PubMed  Google Scholar 

  65. Suinesiaputra A, Ablin P, Alba X, Alessandrini M, Allen J, Bai W, Cimen S, Claes P, Cowan BR, D’hooge J, (2017) Statistical shape modeling of the left ventricle: myocardial infarct classification challenge. IEEE J Biomed Health Inform 22:503–515

    Article  PubMed  PubMed Central  Google Scholar 

  66. Valizadeh G, Mofrad FB, Shalbaf A (2019) Impacts of spherical harmonics shape descriptors on the inter-slice interpolation of MR images. In: 2019 26th National and 4th International Iranian Conference on Biomedical Engineering (ICBME). IEEE, pp 26–30

  67. Vapnik V (2013) The nature of statistical learning theory. Springer science & business media, Berlin

    Google Scholar 

  68. Vidya KS, Ng E, Acharya UR, Chou SM, San Tan R, Ghista DN (2015) Computer-aided diagnosis of myocardial infarction using ultrasound images with DWT, GLCM and HOS methods: a comparative study. Comput Biol Med 62:86–93

    Article  PubMed  Google Scholar 

  69. Vigneault DM, Xie W, Ho CY, Bluemke DA, Noble JA (2018) Ω-net (omega-net): fully automatic, multi-view cardiac MR detection, orientation, and segmentation with deep neural networks. Med Image Anal 48:95–106

    Article  PubMed  PubMed Central  Google Scholar 

  70. Weintraub RG, Semsarian C, Macdonald P (2017) Dilated cardiomyopathy. Lancet 390:400–414

    Article  CAS  PubMed  Google Scholar 

  71. Zhan C, Shi M, Wu R, He H, Liu X, Shen B (2019) MIRKB: a myocardial infarction risk knowledge base. Database 2019

  72. Zhang D, Lu G (2004) Review of shape representation and description techniques. Pattern Recogn 37:1–19

    Article  Google Scholar 

  73. Zhang N, Yang G, Gao Z, Xu C, Zhang Y, Shi R, Keegan J, Xu L, Zhang H, Fan Z (2019) Deep learning for diagnosis of chronic myocardial infarction on nonenhanced cardiac cine MRI. Radiology 291:606–617

    Article  PubMed  Google Scholar 

  74. Zhang X, Ambale-Venkatesh B, Bluemke DA, Cowan BR, Finn JP, Kadish AH, Lee DC, Lima JA, Hundley WG, Suinesiaputra A (2015) Information maximizing component analysis of left ventricular remodeling due to myocardial infarction. J Transl Med 13:343

    Article  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Farshid Babapour Mofrad.

Additional information

Publisher's note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Valizadeh, G., Babapour Mofrad, F. & Shalbaf, A. Parametric-based feature selection via spherical harmonic coefficients for the left ventricle myocardial infarction screening. Med Biol Eng Comput 59, 1261–1283 (2021). https://doi.org/10.1007/s11517-021-02372-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11517-021-02372-4

Keywords

Navigation