Skip to main content

Advertisement

Log in

Manufacturing and evaluation of a multi-purpose Iranian head and neck anthropomorphic phantom called MIHAN

  • Original Article
  • Published:
Medical & Biological Engineering & Computing Aims and scope Submit manuscript

Abstract

A new multi-purpose Iranian head and neck (MIHAN) anthropomorphic phantom was designed and manufactured to be used in diagnostic and therapeutic applications. Geometry of MIHAN phantom was determined based on the average dimensions acquired by CT scans of twenty patients without any medical problems in their head and neck site. Because the phantom was expected to be used with different modalities with a wide range of photon energies, attenuation coefficients of some selected materials were determined using Monte Carlo simulation. Based on analytical and simulation results, acrylonitrile butadiene styrene (ABS) and polylactic acid (PLA) were found suitable choices for soft and bony tissues, respectively. They were used in the 3D printer to build the phantom. The suitability of the materials was checked by CT number value comparison between the organs included in the phantom and the corresponding body tissues and also film dosimetry of a typical intensity-modulated radiation therapy (IMRT) plan.. Hounsfield Unit agreement and 95% ± 2% pass rate for the IMRT plan verification proved the suitability of material selection. Also, the film dosimetry showed feasibility of using MIHAN in radiotherapy plan verification workflow. In addition, PLA was introduced as a spongy bone tissue substitute for the first time.

Graphical abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. White DR, Booz J, Griffith RV, Spokas JJ, Wilson IJ (1989) Tissue substitutes in radiation dosimetry and measurement. J Int Comm Radiat Units Meas (ICRU) Rep 44 os23. https://doi.org/10.1093/jicru/os23.1.Report44

  2. Hermosilla A, Diaz Londono G, García M, Ruíz F, Andrade P, Pérez A (2014) Design and manufacturing of anthropomorphic thyroid-neck phantom for use in nuclear medicine centres in Chile. Radiat Prot Dosim 162:508–514. https://doi.org/10.1093/rpd/ncu022

    Article  CAS  Google Scholar 

  3. Alqahtani MS, Lees JE, Bugby SL, Samara-Ratna P, Ng AH, Perkins AC (2017) Design and implementation of a prototype head and neck phantom for the performance evaluation of gamma imaging systems. EJNMMI Phys 4:19. https://doi.org/10.1186/s40658-017-0186-3

    Article  PubMed  PubMed Central  Google Scholar 

  4. Mehdizadeh Naderi S, Sina S, Karimipoorfard M, Lotfalizadeh F, Entezarmahdi M, Moradi H, Faghihi R (2015) Design and fabrication of a multipurpose thyroid phantom for medical dosimetry and calibration. Radiat Prot Dosim 168:503–508. https://doi.org/10.1093/rpd/ncv359

    Article  CAS  Google Scholar 

  5. Radaideh KM, Matalqah LM, Tajuddin A, Lee WF, Bauk S, Munem EEA (2013) Development and evaluation of a Perspex anthropomorphic head and neck phantom for three dimensional conformal radiation therapy (3D-CRT). J Radiother Pract 12:272–280. https://doi.org/10.1017/S1460396912000453

    Article  Google Scholar 

  6. Gopishankar N, Vivekanandhan S, Rath G, Laviraj M, Senthilkumaran S, Kale S, Thulkar S, Bisht R, Subramani V (2013) Indigenously developed multipurpose acrylic head phantom for verification of IMRT using film and gel dosimetry. J Appl Clin Med Phys 14:62–76. https://doi.org/10.1120/jacmp.v14i2.4041

    Article  PubMed Central  Google Scholar 

  7. Molineu A, Followill DS, Balter PA, Hanson WF, Gillin MT, Huq MS, Eisbruch A, Ibbott GS (2005) Design and implementation of an anthropomorphic quality assurance phantom for intensity-modulated radiation therapy for the Radiation Therapy Oncology Group. Int J Radiat Oncol Biol Phys 63:577–583. https://doi.org/10.1016/j.ijrobp.2005.05.021

    Article  PubMed  Google Scholar 

  8. Aitkenhead AH, Rowbottom CG, Mackay RI (2013) Marvin: an anatomical phantom for dosimetric evaluation of complex radiotherapy of the head and neck. Phys Med Biol 58:6915. https://doi.org/10.1088/0031-9155/58/19/6915

    Article  CAS  PubMed  Google Scholar 

  9. Webster GJ, Hardy MJ, Rowbottom CG, Mackay RI (2008) Design and implementation of a head-and-neck phantom for system audit and verification of intensity-modulated radiation therapy. J Appl Clin Med Phys 9:46–56. https://doi.org/10.1120/jacmp.v9i2.2740

    Article  PubMed  PubMed Central  Google Scholar 

  10. Beaumont T, Ideias PC, Rimlinger M, Broggio D, Franck D (2017) Development and test of sets of 3D printed age-specific thyroid phantoms for 131I measurements. Phys Med Biol 62:4673. https://doi.org/10.1088/1361-6560/aa6514

    Article  CAS  PubMed  Google Scholar 

  11. Han Y, Lee SB, Shin EH, Kim JK, Ju SG, Yoon M, Ahn YC, Lim C, Jeong HK, Oh HJ Development of a head and neck phantom for remote-audit program of IMRT treatment. In: World Congress on Medical Physics and Biomedical Engineering 2006, IFMBE Proceedings, 2007. Springer, Berlin, Heidelberg, pp 2020–2023. https://doi.org/10.1007/978-3-540-36841-0_507

  12. Ibbott G, Beach M, Maryanski M (2002) An anthropomorphic head phantom with a BANG polymer gel insert for dosimetric evaluation of IMRT treatment delivery. International Atomic Energy Agency (IAEA)

  13. Atom Max dental & diagnostic head phantom. http://www.cirsinc.com/products/all/35/atom-max-dental-and-diagnostic-head-phantom/. 2018

  14. IMRT head and neck phantom. http://www.cirsinc.com/products/all/11/imrt-head-and-neck-phantom/. 2018

  15. Alssabbagh M, Tajuddin AA, Abdulmanap M, Zainon R (2017) Evaluation of 3D printing materials for fabrication of a novel multi-functional 3D thyroid phantom for medical dosimetry and image quality. Rad Phys Chem 135:106–112. https://doi.org/10.1016/j.radphyschem.2017.02.009

    Article  CAS  Google Scholar 

  16. Mayer R, Liacouras P, Thomas A, Kang M, Lin L, Simone CB (2015) 3D printer generated thorax phantom with mobile tumor for radiation dosimetry. Rev Sci Instrum 86:074301. https://doi.org/10.1063/1.4923294

    Article  CAS  PubMed  Google Scholar 

  17. Hariri Tabrizi S, Ramezani M, Feghhi SAH, Geramifar P (2020) In vitro evaluation of an iodine radionuclide dosimeter (IRD) for continuous patient monitoring. Med Biol Eng Compu 58:763–769. https://doi.org/10.1007/s11517-020-02129-5

    Article  Google Scholar 

  18. Lee C, Lee C, Park SH, Lee JK (2006) Development of the two Korean adult tomographic computational phantoms for organ dosimetry. Med phys 33:380–390. https://doi.org/10.1118/1.2161405

    Article  PubMed  Google Scholar 

  19. Nguyen TT, Yeom YS, Kim HS, Wang ZJ, Han MC, Kim CH, Lee JK, Zankl M, Petoussi-Henss N, Bolch WE (2015) Incorporation of detailed eye model into polygon-mesh versions of ICRP-110 reference phantoms. Phys Med Biol 60:8695

    Article  CAS  Google Scholar 

  20. Wagner H (2002) Reinforcement. Encyclopedia of Polymer Science and Technology

  21. Khan FM, Gibbons JP (2014) Khan’s the physics of radiation therapy. Lippincott Williams & Wilkins

    Google Scholar 

  22. Kumar R, Sharma S, Despande S, Ghadi Y, Shaiju V, Amols H, Mayya Y (2010) Acrylonitrile butadiene styrene (ABS) plastic-based low cost tissue equivalent phantom for verification dosimetry in IMRT. J Appl Clin Med Phys 11:24–32. https://doi.org/10.1120/jacmp.v11i1.3030

    Article  Google Scholar 

  23. Negus IS, Holmes RB, Jordan KC, Nash DA, Thorne GC, Saunders M (2016) Development of a 3D printed subresolution sandwich phantom for validation of brain SPECT analysis. Med phys 43:5020–5027. https://doi.org/10.1118/1.4960003

    Article  PubMed  Google Scholar 

  24. Cember H (1969) Introduction to health physics. Introduction to health physics

  25. Sheikh-Bagheri D, Rogers D (2002) Monte Carlo calculation of nine megavoltage photon beam spectra using the BEAM code. Med phys 29:391–402. https://doi.org/10.1118/1.1445413

    Article  PubMed  Google Scholar 

  26. Hsieh J Computed tomography: principles, design, artifacts, and recent advances. In, 2009. SPIE Bellingham, WA,

  27. Aluminum attenuation coefficients. https://physics.nist.gov/PhysRefData/XrayMassCoef/ElemTab/z13.html. 2018

  28. Water Attenuation coefficients. https://physics.nist.gov/PhysRefData/XrayMassCoef/ComTab/water.html. 2018

  29. Devic S, Seuntjens J, Sham E, Podgorsak EB, Schmidtlein CR, Kirov AS, Soares CG (2005) Precise radiochromic film dosimetry using a flat-bed document scanner. Med phys 32:2245–2253. https://doi.org/10.1118/1.1929253

    Article  PubMed  Google Scholar 

  30. Hong TS, Tomé WA, Harari PM (2012) Heterogeneity in head and neck IMRT target design and clinical practice. Radiother Oncol 103:92–98

    Article  Google Scholar 

  31. Low DA, Dempsey JF (2003) Evaluation of the gamma dose distribution comparison method. Med phys 30:2455–2464. https://doi.org/10.1118/1.1598711

    Article  PubMed  Google Scholar 

  32. Alber M, Broggi S, De Wagter C, Eichwurzel I, Engström P, Fiorino C, Georg D, Hartmann G, Knöös T, Leal A (2008) Guidelines for the verification of IMRT. ESTRO booklet 7

  33. Palta J, Kim S, Li JG, Liu C (2003) Tolerance limits and action levels for planning and delivery of IMRT. In: Intensity-modulated radiation therapy: the state of the art. Medical Physics, Madison, Wisconsin,

Download references

Acknowledgements

We would like to thank Ms. Farahnaz Rahimi for providing suitable CT images.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sanaz Hariri Tabrizi.

Ethics declarations

Conflict of interest

The authors declare no competing interests.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ahmadi, M., Ramezani Anarestani, M., Hariri Tabrizi, S. et al. Manufacturing and evaluation of a multi-purpose Iranian head and neck anthropomorphic phantom called MIHAN. Med Biol Eng Comput 59, 1611–1620 (2021). https://doi.org/10.1007/s11517-021-02394-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11517-021-02394-y

Keywords

Navigation