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Abstract
Computerized interpretation of electrocardiogram plays an important role in daily cardiovascular healthcare. However,
inaccurate interpretations lead to misdiagnoses and delay proper treatments. In this work, we built a high-quality Chinese 12-
lead resting electrocardiogram dataset with 15,357 records, and called for a community effort to improve the performances
of CIE through the China ECG AI Contest 2019. This dataset covers most types of ECG interpretations, including the
normal type, 8 common abnormal types, and the other type which includes both uncommon abnormal and noise signals.
Based on the Contest, we systematically assessed and analyzed a set of top-performing methods, most of which are deep
neural networks, with both their commonalities and characteristics. This study establishes the benchmarks for computerized
interpretation of 12-lead resting electrocardiogram and provides insights for the development of new methods.
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1 Introduction

Cardiovascular disease is the leading cause of death around
the globe [25] and becomes a heavy burden in the world’s
largest population—China [20]. Electrocardiogram (ECG)
is essential to diagnose and screen cardiovascular diseases
(CADs) including arrhythmia, myocardial infarction, and
hypertrophy. It is one of the most common procedures
in daily cardiovascular healthcare, with 3 million ECGs
estimated to be performed worldwide every day [27].
However, about 20 percent of CIE is incorrect based on
a rough estimation [22], and unrecognized mistakes are
more likely to result in misdiagnoses and delay the proper
treatments [26]. Therefore, improving CIE help lay the
foundation for the precision diagnosis of CADs, leading to
better cardiovascular healthcare.

High-quality ECG data helps promote the development
of CIE. Most previous studies are based on the MIT-BIH
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Arrhythmia Database, which consists of 2-lead Holter
data monitored from 48 patients [24]. Though these 48
ECG records were carefully annotated, standard 12-lead
ECGs have become the mainstream in clinical practice.
The Common Standards for Electrocardiography database,
containing 1,000 standard 12-lead resting ECG records, is
applied to assess for wave delineation since the late 1980s
[31]. More standard 12-lead ECG datasets are published
later, such as the Physionet 2011 challenge dataset for
signal quality evaluation and the STAFF III dataset for
coronary artery identification [23, 32]. The CPSC2018
dataset provides about 9 thousand 12-lead resting ECGs
with nine types of interpretations, which however take only
a small fraction among various clinical interpretations [19].
Though various methods showed their efficiencies on these
datasets with limited patient samples [3, 30, 33], lacking
disease patterns in a larger population hinders algorithm
developing and performance assessment.

Deep neural networks are promising to play an important
role in the daily clinical practice of ECG monitoring and
interpretation [16]. For example, a 34-layer convolutional
neural network was reported to outperform ECG technicians
on single-lead Holter data [9]. Physionet Challenge 2017
offers a chance for the research community to compete on
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atrial fibrillation prediction based on short-duration single-
lead data [4]. Three of the four winning teams utilized
deep neural networks combined with handcrafted expert
features [5, 12, 28]. However, these single-lead ECG records
were recorded by wearables and cannot provide as much
information as standard 12-lead ECGs.

A large volume of 12-lead ECG data with high-quality
interpretations is crucial to assess the deep learning based
CIE. Though CPSC2018 made the first attempt in China
[19], its criteria for assessment ignores the fact that a record
may contain more than one abnormality. Therefore, there
is urgent need for a better understanding that how much
machine learning methods, especially deep neural networks,
can improve the predictive performance for standard 12-
lead ECG data. However, to our knowledge, there are no
previous studies that systematically assess and analyze a set
of algorithms based on a common dataset.

In this paper, we report a novel dataset consisting
of 15 thousand 12-lead resting ECG records, as well
as a systematic assessment and analysis of benchmark
algorithms from the China ECG AI Contest (CEAC)
2019 [1]. This dataset covers most types of clinical
interpretations revised by four doctors and reflects the
multi-label characteristics in clinical practice. Based on this
novel dataset, CEAC 2019 calls for a community effort
to assess and improve the computerized interpretation of
12-lead ECG.

We analyzed the top-performing methods, most of which
are deep neural networks, aiming to identify successful
cases. Our findings mainly include four aspects: (1)
the network structure composed of CNN, RNN and
attention can achieve excellent predictive performances; (2)
incorporating external information, such as learning from
other data or expert knowledge, can alleviate the overfitting
problem; (3) data augmentation, focal loss and weighted
cross-entropy are effective for imbalanced data; (4) multi-
task learning and post-processing are utilized to deal
with the multi-label classification problem. This systematic
analysis may provide insights for future researches.

2 The CEAC dataset and evaluation tasks

An ECG records the electrical activities in the heart, and
a 12-lead resting ECG is a common examination in the
clinic to diagnose arrhythmia, myocardial infarction, and
hypertrophy. We built a novel dataset consisting of about 15
thousand 12-lead resting ECG records, to train, validate and
test different algorithms from both academia and industry.
Since CEAC 2019 calls for a community effort to improve
CIE, this dataset is defined as CEAC Dataset V1.0, which
will be added with more data and more careful annotations
in the future. To our knowledge, this is currently the largest

dataset with a 60 percent increase compared to the state-of-
the-art dataset [19].

There are mainly three points that distinguish the CEAC
dataset from others:

(1) it is currently the largest standard 12-lead ECG dataset
in China to our knowledge;

(2) it covers most types of clinical interpretations revised
by doctors and technicians;

(3) it reflects the fact that one ECG record may contain
more than one abnormality.

This dataset provides the training, validation, and test set
with the same statistical characteristics for assessing differ-
ent algorithms. Researchers are welcome to have access to
the CEAC dataset by contact with the corresponding author
through the website [2].

2.1 Dataset building

All ECG records were collected from four hospitals in
China. Four experts focused their time and efforts to
annotate and review all ECG samples. To make the
interpretations as correct as possible, two doctors and
two technicians made up two teams, with each team
consisting of one doctor and one technician. The workflow
of annotating and reviewing is the same as in clinical
practice, with one technician annotating an ECG record, and
one doctor reviewing this record. The experts utilized a web-
based tool for distributed ECG annotation in a local area
network [7]. The dataset building has been approved by the
ethics committees of the four hospitals.

2.2 Basic statistics

The complete dataset consists of 15,357 records. We
select labels with as many samples as possible to rep-
resent the interpretations, resulting in 10 labels includ-
ing normal ECGs (Normal), atrial fibrillation (AF), first-
degree atrioventricular node block (FDAVB), right bun-
dle branch block (RBBB), left anterior fascicular block
(LAFB), premature ventricular contractions (PVC), prema-
ture atrial contraction (PAC), early repolarization (ER), T
wave change (TWC) and other ECGs (Others). The clinical
definitions of each label are summarized in the Supplemen-
tary Materials. In short, the first 9 labels refer to normal
ECGs and those with abnormalities, and ‘Others’ refers to
those records which cannot be exactly descript by any of the
9 types. Since many abnormalities are relatively rare accord-
ing to daily practices in the clinic, we gathered these types
in one type ‘others’ such as atrial flutter and pre-excitation.
As a result, compared to the latest 12-lead resting ECG
dataset [19], the CEAC dataset covers most interpretation
types.
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The interpretations of ECG records are shown in Fig. 1.
In Fig. 1(a), the darker green boxes represent the larger
numbers of samples. The samples labeled as Normal, TWC,
and PVC are the top three, while LAFB, Others, and ER
are the bottom three. Since one ECG record may contain
more than one abnormality, Fig. 1(a) also shows the co-
existence for every pair of labels. The darker blue boxes
represent the more frequent pairs. For example, AF is more
often to co-exist with TWC and RBBB. The lighter blue
boxes represent the less frequent pairs. For example, normal
never co-exist with other labels; Others never co-exist with
any other nine labels; AF never co-exists with FDAVB. The
proportions of multi-label records are shown in Fig. 1(b).
The number of multi-label samples takes up no more than
15 percent in total. Among these samples, the majority have
two labels. The samples with more than four labels take up
less than 1 percent.

Fig. 1 Multi-label clinical interpretations of all ECG records in the
CEAC dataset. (a) reflects the multi-label characters among each pair
of clinical interpretations. (b) shows that almost 15 percents of all
records contain more than one interpretations

The clinical variables including age and gender are
shown in Fig. 2. Figure 2(a) shows the age distribution under
each label, with gender as the covariate. Since some records
have no gender information, Fig. 2(a) represents them
as missing data. Patients labeled as Normal is relatively
younger than most of the other 9 labels since the elderly are
more likely to have cardiovascular diseases. Male patients
with ER are the second youngest than the others except for
Normal. This suggests that both age and gender can be a
feature to predict ER. As shown in Fig. 2(b), though most
samples are recorded for 10 seconds, the time length varies
across all records.

To assess different algorithms, the complete dataset is
divided into the training set with 6,689 records, validation
set with 559 records, and test set with 8110 records with

Fig. 2 Basic statistics of all records in the CEAC dataset. (a) shows the
age distributions among each clinical interpretation, (b) shows that the
distribution of time length of all records. The error bars are percentiles
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similar statistical characteristics. All algorithms can be
trained and validated on the training and validation set.
The test set remains private to assess or evaluate the
generalization ability.

2.3 Evaluation tasks

CEAC 2019 aims to call for a community effort to evaluate
the current state of computerized interpretation of 12-
lead resting ECGs, to set up the benchmark predictive
performances, and to provide insights for further research.
Three rounds of the contest, including a preliminary, a
rematch and a final, were set to gradually screen competitive
participating teams.

During the three rounds of the contest, we set up three
evaluation tasks respectively: (1) how well do algorithms
distinct abnormal ECGs from normal ones? (2) how well
do algorithms predict the eight abnormalities or Normal
for one ECG record? (3) how well do algorithms predict a
record that falls into none of the nine pre-defined categories,
namely the Others? In the preliminary, we screened the top
100 among the 354 participating teams; in the rematch, we
screened the top 23 teams among the 68 valid submissions;
in the final, we received 21 valid submissions.

In this paper, we discuss the third task set up for the final
of the contest. Because this is the most complete task that
is closely related to clinical practices, and also requires the
complete dataset to develop and assess algorithms.

There are several challenges in the final evaluation task
as follows:

* Challenge 1: how to efficiently extract features from
data with variable time lengths;

* Challenge 2: how to overcome the overfitting problem,
which is quite usual to deep neural
networks;

* Challenge 3: the number of samples varies among
different labels. Imbalanced data often
leads to overfitting on labels with more
data [10];

* Challenge 4: one record may contain more than one
abnormality, thus a multi-label classifica-
tion problem needs to be solved.

In addition, all participating teams faced a common
difficulty in that there was no glance at the hidden test
set. All developing and training procedures should be
accomplished based on the training and validation set.

2.4 The scoringmetrics

To assess the predictive performances, we use the measure-
ments based on multi-label classification [37]. For each of
the category 1 ≤ j ≤ 10 and each of the ECG record

1 ≤ i ≤ N , there are four quantities to measure predictive
results.

T Pj = |xi |yj ∈ Yi, yj ∈ f (xi), 1 ≤ i ≤ N | (1)

FPj = |xi |yj �∈ Yi, yj ∈ f (xi), 1 ≤ i ≤ N | (2)

T Nj = |xi |yj �∈ Yi, yj �∈ f (xi), 1 ≤ i ≤ N | (3)

FNj = |xi |yj ∈ Yi, yj �∈ f (xi), 1 ≤ i ≤ N | (4)

Based on the four above quantities, we can define precision,
recall and F1 score for each category,

Precisionj = T Pj

T Pj + FPj

(5)

Recallj = T Pj

T Pj + FNj

(6)

F1j = 2 · Precisionj · Recallj

P recisionj + Recallj
(7)

The final F1 score for each team is the average of each
category.

3 Benchmarkmethods and performances

Aiming to identify success cases and to provide insights
for further research, we analyzed the top 11 out of the 21
methods in the final of CEAC 2019, most of which are deep
neural networks. We summarized their properties in the
view of supervised learning. Table 1 lists the methods with
some of their key properties and the final F1 scores. Figure 3
shows the F1 scores of each method on each label. We also
calculated the accuracies of each method as in Table 1 in the
Supplementary File.

To summarize how the top methods deal with the four
challenges mentioned above, key properties are grouped
into data preprocessing, feature engineering, and classifiers.
In data processing, it is shown that data alignment is
necessary to cope with various time lengths (Challenge 1).
In feature engineering, the first part summarizes how to
design network structures to efficiently extract features; the
second part summarizes how to apply external information
to overcome the overfitting problem (Challenge 2). In the
design of classifiers, focal loss and weighted cross-entropy
are found to perform excellent among the top methods
(Challenge 3); multi-task learning and postprocessing are
utilized for multi-label classification (Challenge 4).

3.1 Data preprocessing

The main purpose of data preprocessing is to provide sam-
ples that are suitable for feature engineering. Considering
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Table 1 Summary of the Top-Performing 11 Benchmark Methods. All methods are ranked according to their F1 scores. The network structures
are summarized and their characteristics are shown as in data augmentataion and transfer learning, etc

1FL refers to focal loss. 2CE refers to cross entropy

the characteristics of 12-lead resting ECG data, researchers
need to design strategies to cope with signals of various time
lengths and improve signal qualities.

Signal processing is utilized to improve signal qualities.
Since the unit of ECG signals is millivolts, and ECG is often
contaminated with noises such as baseline wander, muscle
artifact and electrode motion artifact, etc., denoising is a key
step to improve signal-to-noise ratios.

Data alignment The ECG records of the CEAC dataset
vary in time lengths, as shown in Fig. 2(b). Deep neural
networks such as CNNs usually require a fixed input size of
data for feature learning. Therefore, appropriate processing
strategies are essential to align all ECG records to an equal
length.

Padding and cropping are applied for data alignment.
For short signals, padding to either side helps to fix time
lengths. One strategy is to pad with zeros, which adds no
information and can be handled by convolutions. Another
strategy is to pad with self-repeated signals, which adds
repetitive information.

Long signals are cropped into multiple segments with
or without overlapping windows. These segments are
labeled after the original long signals. However, for isolated
abnormalities such as PVC and PAC, some segments
without them are also labeled as PAC or PVC, which
result in incorrectly labeled samples. To deal with this
disadvantage, Method 3 manually labels all PAC and PVC
segments; Method 4 applies a heuristic strategy to filter
segments unlikely to be PVC or PAC. As a result, both
methods achieved high F1 scores in PVC and PAC.

Data augmentation Cropping one signal to several seg-
ments can also be seen as a data augmentation strategy.
Long signals belonging to labels with fewer samples can
be augmented, which may help deal with the imbalanced
data problem. Up-sampling with replacement is also applied

to overcome the ignorance of those labels with fewer data.
Instead of directly up-sampling, some methods multiply the
signals with a random coefficient closed to 1. Some meth-
ods also down-sample normal and TWC samples, which
have the largest data sizes according to Fig. 1(a). Both up-
sampling and down-sampling help alleviate overfitting on
labels with more data.

Method 2 converts the 1D time-series data to 2D images
by plotting the signals as curves on a fixed background,
therefore transforming the original task into a computer
vision task. However, several methods also utilize this
strategy but never achieved as high F1 scores. An important
trick is to color the signal curves on the images, and
different color combinations affect predictive performances
on both the training and validation set. As for data
augmentation, Method 2 finds that affine transformation can
improve predictive performances, while other traditional
image processing procedures like flipping, lighting or
rotating decrease the F1 scores.

3.2 Feature engineering

Feature engineering here refers to extracting useful features
that can represent the key ECG characteristics of different
labels. In this section, the first part mainly summarizes
efficient strategies to design deep neural networks; the
second part mainly summarizes how to incorporate external
information and overcome the overfitting problem.

3.2.1 Design of deep neural networks

It is found that a common network structure is utilized
and proved its efficiency based on the high F1 scores.
As shown in Fig. 4, this common structure is composed
of convolutional layers, recurrent layers, and attention
modules. This network structure is reasonable to analyze
time-series data such as ECG signals [34]. Firstly, the
convolutional layers extract features and reduce dimensions.

37Med Biol Eng Comput (2022) 60:33–45



Fig. 3 Assessing the F1 scores of the top 11 methods. (a) shows the
three interpretations with the highest average scores, (b) shows three
with the modest scores and (c) shows the lowest

Fig. 4 The commonalities of all top-performing deep neural networks.
CNN layers combined with RNN layers and attention modules can
achieve good performances

Deeper features with fewer dimensions generally represent
data at a more abstract level [17]. Secondly, the recurrent
layers, usually bidirectional RNN or LSTM, learn the
correlations among the deep features. This is suitable for
ECG signals in that time dependencies are represented in
the P-QRS-T waves. Thirdly, the attention modules, which
allow modeling of dependencies without regard to the
distance in the input sequences [29], can give higher weights
to features that are correlated to a specific label.

Other methods among the top 11 also follow this
structure, but lacking either the recurrent layers or the
attention modules. For example, Method 2 transforms to
an image classification problem and therefore ignores the
recurrent layers; Method 4 applies a 1D ResNet [35] and
ignores both recurrent layers and attention modules; Method
5 utilizes a 1D DenseNet and self-attention. These methods
ignore the time dependencies and focus more on the shapes
of ECG signals.

The backbone CNNs are essential to extract features from
ECG signals. More powerful feature extraction is more
likely to achieve higher F1 scores. In Table 1, both method
6 and method 8 apply a relatively shallow backbone
consisting of 15 convolutional layers and achieve F1

scores close to other more complex structures. Their high
performances suggest that most ECG features can be
captured by relatively shallow backbone CNNs.

According to Table 1, 6 out of 11 methods apply residual
blocks, including Res2Net [8], SE-Resnet [13] and different
versions of ResNet [11], as shown in Fig. 4. Stacking
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more residual blocks to form deeper CNNs enhances
feature representation abilities and increases predictive
performances [11]. Method 1 applies Res2Net to promote
multi-scale representation ability [8]; Method 2 applies
SE-ResNet to capture the channel-wise relationships [13].
Besides ResNet, DenseNet is applied by 2 methods [14].
With the increase of the CEAC data size in the future,
these deeper networks may develop stronger capacities and
capabilities.

The recurrent layers are essential to explore the depen-
dencies among features representing ECG signals. Simple
RNN, LSTM, GRU and their bidirectional versions are
applied by 7 methods as shown in Table 1. These applica-
tions of recurrent layers can be roughly divided into two
types. One type is to learn the correlations among features
of one segment; the other is to learn the correlations among
features from several segments, as shown in Fig. 4.

The attention modules give different weights to different
features. According to Table 1, 8 methods utilize various
types of attention modules, which can be grouped into three
types of strategies, as shown in Fig. 4. The first one is
to weigh different features output by the recurrent layers.
The second one is to apply one attention module to each
label [21]. The last one is to combine with the backbone
CNNs, such as the squeeze-and-excitation layers combined
with ResNet in Method 2 [13] and the self-attention
combined with DenseNet in Method 5. Attention modules
are supposed to be effective for predicting labels with
isolated events, including PVC and PAC. From Fig. 3(a)
and (b), methods with attention modules often achieve high
F1 scores on these two labels.

3.2.2 Incorporating external information

Incorporating more information is effective to overcome
the overfitting problem. For example, learning from other
data or transfer learning can pretrain networks by external
datasets and therefore incorporate information from these
datasets; learning from expert knowledge can also improve
predictive performances by introducing inductive bias.
According to Fig. 5, several top methods are summarized
and grouped into either learning from other data or from
expert knowledge.

Learning fromother data or transfer learning refers to mod-
eling a neural network on a different but somehow similar
problem and therefore partially reuse the network parame-
ters to accelerate training and improving performance. Since
Method 2 transforms into an image classification problem,
it pretrains the SE-ResNet on the ImageNet dataset [6].

Fig. 5 Incorporating external information is one way to alleviate the
overfitting problem common to deep neural networks. Some top-
performing methods either learning knowledge from other dataset or
from expert knowledge

Method 11 pretrains its network on the CPSC2018 dataset,
whose labels are different from the CEAC dataset.

Learning from expert knowlege to extract handcrafted fea-
tures can assist neural networks to improve performances.
Three methods apply handcrafted features in different ways.
Method 1 identifies fiducial points of P-QRS-T waves on
each of the leads, then inputs this information to a deep neu-
ral network for automatic feature extraction [38]. Method 4
first identifies the R peaks and then calculates statistical fea-
tures such as RR intervals and QRS wave widths. Instead of
inputting these features to a neural network, Method 4 com-
bines the handcrafted features with deep features extracted
by the backbone ResNet [35]. Method 9 extracts various
types of handcrafted features related to LAFB and ER and
inputs them to an XGBoost.

3.3 Classifiers

All methods need to predict multi-labels for each ECG
record. According to Fig. 1(b), about 15 percent of all
records are labeled with more than one abnormality. In
this section, it is shown that all top 11 methods apply
multi-task learning to make multi-label predictions. Due to
the imbalanced data problem, these methods also need to
find proper loss functions. Also, almost all methods apply
ensemble learning to improve accuracy and postprocessing
to make more reasonable predictions due to some known
relationships among different labels.

Multi-task learning treats each label prediction as a separate
task and solves all tasks simultaneously. One of its
benefits is to exploit commonalities across different
tasks, which leads to smaller model sizes and better
performances. According to Table 1, all top 11 methods
use multi-task learning to design their networks, in which
the decision layers are composed of multiple sigmoid
functions. This strategy defines each label prediction as
a binary classification task [15]. A positive prediction
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means the record belongs to one label, while a negative
prediction means the opposite. In comparison, some of
the methods that are not among the top 11 transform
multi-label prediction to several binary classification tasks.
This strategy does not share model parameters across
different tasks. Modeling correlations among different
labels may help improve performances. Method 10 outputs
the predicted probabilities of each neural network and input
them to an ML-KNN [36].

Loss function plays an important role to deal with imbal-
anced data according to Table 1. Most methods utilize the
weighted binary cross-entropy. It sets a weight coefficient
for each label and therefore alleviates overfitting on labels
with more data. Both Method 1 and Method 2 apply the
focal loss to deal with the class imbalance problem. The
standard cross-entropy loss is reshaped such that it down-
weights the loss assigned to well-classified samples [18]. In
the case of 12-lead resting ECG data, the focal loss results
in better performances.

Ensemble learning reduces variances and increases robust-
ness. Since many methods crop long signals into several
segments, the summation of corresponding predictions can
be either averaging probabilities or majority voting. Some
methods also apply bagging to train models on re-sampled
datasets.

Postprocessing focuses on the correlations among different
labels. The idea is to post-process the results and output
more reasonable predictions according to some known
relationships. For example, normal ECGs do not co-exist
with either abnormalities or Others; AF does not co-exist
with FDAVB, etc. The postprocessing strategy can be a good
choice when the number of labels is modest. It may become
too complex to handle when the number gets too large.
Therefore, modeling the correlations among labels can be
future directions.

4 Conclusion

The building of the largest Chinese 12-lead resting ECG
data makes it possible to comprehensively assess different
algorithms for CIE. Based on CEAC 2019 [1], we called
for a community effort to improve the computerized
interpretation of 12-lead resting ECGs. The systematic
assessment and analysis of the top-performing deep neural
networks establish benchmarks and provide insights for
developing new methods. To our knowledge, no previous

studies have analyzed a comprehensive set of algorithms
based on a common 12-lead resting ECG dataset. We hope
these findings might eventually lead to improvements in
daily cardiovascular healthcare.

Supplementary information The online version contains supplemen-
tary material available at https://doi.org/10.1007/s11517-021-02420-z.
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