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Abstract
The precise classification of incomplete antibody reaction intensity (IARI) in hydrogel chromatography medium high den-
sity medium solid-phase Coombs test is essential for haemolytic disease screening. However, an automatic and contactless 
method is required for accurate classification of IARI. Here, we present a deep ensemble learning model that integrates five 
different convolutional neural networks into a single model for IARI classification. A dataset, including 1628 IARI images 
and corresponding labels of IARI categories ((-), (1 +), (2 +), (3 +), and (4 +)), was used. We trained our model using 1302 
IARIs and validated its performance using 326 IARIs. The proposed model achieved 100%, 99.4%, 99.4%, 100%, and 100% 
accuracies in the ( −), (1 +), (2 +), (3 +), and (4 +) categories, respectively. The results were compared with those of manual 
classification by immunologists (average accuracy: 99.8% vs. 88.3%, p < 0.01). Following model assistance, all three immu-
nologists achieved increased accuracy (average accuracy: + 6.1%), with the average accuracy of junior immunologists maxi-
mum increasing by 11.3%. The time required for model classification was 0.094 s·image–1, whereas that required manually 
was 5.528 s·image–1. The proposed model can thus substantially improve the accuracy and efficiency of IARI classification 
and facilitate the automation of haemolytic disease screening equipment.
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1  Introduction

Acute blood loss, anaemia, and coagulopathy are treated 
using blood transfusion [1, 2]. Improper blood transfusion 
or incompatible transfusion increases the risk of haemolytic 
diseases (e.g., haemolytic disease in new-borns, autoimmune 

haemolytic disease, drug immune haemolytic diseases), 
renal failure, and even death [3–5]. The incomplete antibody 
reaction intensity (IARI) is the main factor responsible for 
incompatible transfusion. IARI is divided into five catego-
ries ((-), (1 +), (2 +), (3 +), (4 +)), with the higher intensity 
category causing more serious incompatible transfusion [6]. 
Therefore, IARI multi-classification tests are essential before 
blood transfusion [7–9].

Currently, the haemolytic IARI multi-classification test 
mainly uses the micro-column gel immune-assay Coombs 
test (MGIA-Coombs test) as it has high sensitivity and 
strong interpretability [10]. However, fibrin in the plasma 
can erroneously trap red blood cells (RBCs) at the top of the 
gel column, leading to high false-positives with the MGIA-
Coombs test [11–14]. The solid-phase red cell adherence 
Coombs test (SPRCA Coombs test) was then proposed, 
involving pre-coating of anti-human globulin (AHG) on 
U-bottom microwells to prevent RBCs from binding to 
fibrin, which reduces false-positive results [15]. However, 
the SPRCA Coombs test requires a tedious and error-prone 
washing process for RBC suspensions to separate sensitised 
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RBCs from free fibrin, in turn causing false-negative results 
[16–20]. Recently, the hydrogel chromatography medium 
high density medium solid-phase Coombs test (HCM-
HDMS Coombs test) was proposed. It involves hydrogel 
chromatography medium (HCM) as the separation solution 
in the reaction-and-separation chamber for separating sen-
sitised RBCs from free fibrin, thus eliminating the washing 
process and effectively reducing the false-negative results 
[21]. However, this chamber obstructs the view during the 
process of observing incompatible IARI in the HCM-HDMS 
Coombs test, thus affecting accurate visual classification, 
whereas moving the chamber away results in reagent con-
tamination and leakage. Further, the observation process by 
immunologists is subjective and diverse [22]. Therefore, 
contactless, automatic, and intelligent multi-classification 
methods are needed to enhance the practical value of the 
HCM-HDMS Coombs test.

Deep learning has led to the achievement of remarkable 
success in medical image classification [23, 24]. In par-
ticular, with the advent of convolutional neural networks 
(CNNs), high-level semantic features of images can be auto-
matically and effectively extracted to reduce the necessity of 
handcrafted feature processes. Recently, Liu, et al. applied a 
CNN model to the multi-classification of COVID-19 pneu-
monia, other common pneumonia, and normal controls using 
CT images and achieved an accuracy of 92.49% [25]. In 
another study, CNN models were utilized in the automated 
multi-classification of cells in the epithelial tissue of oral 
squamous cell carcinoma, with an accuracy of 97.5% [26]. 
Tessema et al. demonstrated the potential of integrating the 
deep learning-based automatic model into the quantitative 
multi-classification of blood cells with an average accuracy 
of 80.6% [27]. Thus, we hypothesized that CNN methods 
have the potential to achieve automatic and intelligent IARI 
multi-classification, and this will assist immunologists and 
clinicians to improve clinical efficiency and accuracy.

However, among the five IARI categories, the number 
of poor positive samples in (1 +), (2 +), and (3 +) is much 
smaller than that in (-) and (4 +), demonstrating the sample 
imbalance distribution of IARI categories, which will result 
in a shift in the decision boundary of the CNN networks 
in the training process. Further, the distinguishing charac-
teristics between adjacent categories such as (-) and (1 +); 
(1 +), (2 +), and (3 +); and (3 +) and (4 +) are not particu-
larly obvious, thus seriously affecting the ability of CNN 
networks to automatically learn and identify. Moreover, 
there are several bubbles, particulates, and other artefacts 
in reaction mixture of HCM-HDMS Coombs test that hinder 
the classification task. Therefore, the above existing CNN 
models cannot be directly used for effectively solving the 
IARI multi-classification.

In this study, we aimed at establishing a novel deep learn-
ing model for the automatic classification of IARI, which is 
unaffected by the influence of the sample imbalance distri-
bution of IARI categories and the interference of artefacts 
in the HCM-HDMS Coombs test. An ensemble learning 
framework is used to reduce the influence of sample imbal-
ance distribution and obtain accurate classification results. 
A convolutional block attention module (CBAM) is used 
to avoid the interference of artefacts by combining pixel-
level channel interaction relationships and spatial location 
information.

2 � Methods

2.1 � Dataset

In total, 1725 blood samples were collected from the Suzhou 
Blood Centre and the First Affiliated Hospital of Soochow 
University, China; these were kept at 4 °C and used within 
1 week. The corresponding IARI of the blood samples were 
obtained using the HCM-HDMS Coombs test, and 97 sam-
ples (5.62%) whose IARI category could not be obtained 
accurately were excluded. A total of 1628 IARI samples 
(94.38%) were selected, and the number of each IARI cat-
egory was as follows: 650 (-), 230 (1 +), 68 (2 +), 130 (3 +), 
and 550 (4 +). IARI images were captured from U-micro-
plate bottoms in a closed image acquisition space with a sta-
ble light field, using a digital camera. Each image had a size 
of 229 × 230 pixels. The images for the five IARI category 
samples are shown in Fig. 1.

To ensure that all IARI samples were correctly classified, 
the labels were determined by three professional immunolo-
gists. If there was a difference among the labels, the sus-
pected samples were re-tested using the MGIA-Coombs test 
to obtain the correct category. In total, 1302 IARIs (80%) 
were used as a training dataset to develop the deep learning 
model, and another 326 IARIs (20%) were used as a testing 
dataset for model evaluation [28]. Table 1 lists the number 
of labelled samples for each category in the datasets.

As we used a deep neural network-based model for clas-
sification, the training dataset was not sufficient to achieve 
invariances and robustness for the network model. Consider-
ing that data augmentation is a common procedure for gen-
erating sufficient training data for CNN-based models, we 
utilised the data augmentation package from Torchvision-
Transform (https://​pytor​ch-​cn.​readt​hedocs.​io/​zh/​latest/​torch​
vision/​torch​vision-​trans​form/) and augmented the training 
dataset by adopting image cropping, flipping horizontally 
and vertically, rotating at four fixed angles of 0°, 90°, 180°, 
and 270° and zooming.
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2.2 � Classification model

In this study, we proposed an end-to-end deep learning 
model based on CNNs to classify the IARI, as shown in 
Fig. 2a, via two main stages. First, five sub-models were 
built by associating the IARI status. Second, the sub-models 
were combined into an ensemble model in parallel to obtain 
the final category using a collective decision mechanism. 
The details are as presented below.

In the first stage, to address the problem of a single model 
not being able to fully capture the detailed features distin-
guishing between adjacent IARI categories, five different 
CNN-based frameworks, including Alex Deep Convolu-
tional Neural Network (AlexNet), Visual Geometry Group 
(VGG) Network, Residual Network (ResNet), Inception 
Network, and Dense Convolutional Network (DenseNet), 

were adapted to classify the IARIs with improved classifi-
cation performance. AlexNet transforms the linear mapping 
between features into a nonlinear relationship to simulate 
any polynomial [29]. The VGG Network reduces the compu-
tation of each convolution layer and captures more abundant 
features using the stacked convolution core [30]. ResNet 
adds residual blocks and eliminates overfitting [31]. The 
Inception Network balances the network depth and width 
and reasonably reduces the dimensions [32]. DenseNet uti-
lises feature information more efficiently through dense con-
nections and reduces gradient vanishing [33].

Further, a large number of bubbles, particulates, or 
other artefacts in IARIs contribute to the useless features 
extracted and hinder classification. For increased focus on 
effective areas and to suppress useless features, a CBAM 
was added to each CNN framework, as a hybrid attention 
mechanism capable of combining channel dimensions and 
spatial dimensions [34]. In the channel dimension, average 
pooling was used to aggregate channel interaction informa-
tion, and maximum pooling was used to infer the finer chan-
nel information to further improve the representation power 
of the network. In the spatial dimension, average pooling 
and maximum pooling were concatenated to generate an 
efficient feature descriptor for extracting valid feature loca-
tion information. As shown in Fig. 2b, compared with the 
original CNN, CBAM was only inserted between the feature 

Fig. 1   Samples of the five IARI intensity categories (a) Morphology of the (-) category; (b) Morphology of the (1 +) category; (c) Morphology 
of the (2 +) category; (d) Morphology of the (3 +) category; (e) Morphology of the (4 +) category

Table 1   Details of the IARI image dataset used for the experiments

Category 
name

(-) (1 +) (2 +) (3 +) (4 +)

Dataset 650 (40%) 230 (14%) 68 (4%) 130 (8%) 550 (34%)
Training set 

(80%)
520 184 54 104 440

Testing set 
(20%)

130 46 14 26 110
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extractor and classifier of each CNN, instead of in the fea-
ture extraction process, which emphasises the crucial feature 
information and ensures effective feature extraction of five 
CBAM-CNNs (CBAM-AlexNet, CBAM-VGG, CBAM-
ResNet, CBAM-Inception, and CBAM-DenseNet).

In the second stage, five CBAM-CNNs were used to form 
an ensemble model with a parallel combination [35]. A col-
lective decision mechanism, referred to as relative plurality 
voting (RPV) module, was also constructed and added to 
the ensemble model. Based on the RPV module, the inten-
sity category with the most votes among all sub-models was 
identified as the final classified category, providing a more 
reasonable decision boundary for the model. The ensemble 
model with the RPV module showed the advantage of mak-
ing full use of multiple networks to offset the limitations of 
a single network and reduce the overall classification error 
rate [36].

For IARI images, a corresponding ensemble classifica-
tion model was developed. To achieve quick convergence 
of the proposed model, a training dataset comprising five 

IARI categories was used to train the CBAM-CNN model. 
The loss function Loss, for training was cross-entropy, 
which can be represented as follows:

where C is the number of CBAM-CNN models, lc is the loss 
of one CBAM-CNN model, N is the number of IARI images, 
xi is one IARI image, �

(

xi
)

 is the nonlinear transformation 
of xi , yi is the IARI category corresponding to xi , � is the 
parameter set of the model, and p is the probability output 
from the model.

Relying on PyTorch open-source libraries as a back end, 
the ensemble model was implemented on an Ubuntu 16.04 

(1)Loss =
1

C

C
∑

j=1

lc

(2)

lc = −
1

N

N
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[

yi log p
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(
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)
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))]

Fig. 2   The proposed deep learning model design (a) A pipeline of the model; (b) The CBAM-CNN setup: CBAM is a module used before the 
classifier as part of improved CNN frameworks (AlexNet, VGG, ResNet, Inception, and DenseNet)
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computer with one Intel Xeon CPU, using an NVIDIA 
RTX 2080 Ti GPU, with 32 GB available RAM.

2.3 � Performance metrics

Herein, four metrics, Accuracy, Precision, Recall, and 
F–score, were used to quantitatively evaluate the performance 
of the model for each IARI category classification, and these 
are defined as follows:

where true positive (TP) represents the number of positives 
correctly predicted by the classification discriminant model, 
and true negative (TN) represents the number of negatives 
predicted correctly; false positives (FP) and false negatives 
(FN) denote the number of positive and negative misjudge-
ments by the classification model, respectively. β is the 
weight in the F–score calculation to balance the proportion 
of Precision and Recall, and is assigned as equal to 1.

In the imbalanced datasets, macro-averaged metrics were 
computed the average overall categories and gave equal 
weights to each category, which were represented fairly for 
each category and regardless of its frequency [37, 38]. The 
macroperformance of the overall ensemble model for all cate-
gories (n = 5) was evaluated using macro-average Xavg [39–41], 
as follows:

where R = {Accuracy, Precision, Recall, F1–score}.
To quantify the comparison of classification performance 

between the model and the immunologists, the Kappa coeffi-
cient was used to measure the consistency between the predic-
tive values and true values as follows [42]:

(3)Accuracy =
TP + TN

TP + TN + FP + FN

(4)Precision =
TP

TP + FP

(5)Recall =
TP

TP + FN

(6)F − score =

(

1 + �2
)

Precision × Recall

�2Precision + Recall

(7)Xavg =

∑n

i=1
Xi

n
,X ∈ R

(8)Kappa =
p0 − pe

1 − pe

(9)pe =

∑n

i=1

�

TPi + FPi

�

×
�

TPi + FNi

�

(TP + TN + FP + FN)2

where p0 represents Accuracy.

2.4 � Statistical analysis

Statistical analysis was conducted using R software (ver-
sion 3.5.1, https://​www.r-​proje​ct.​org/). Accuracy, Precision, 
Recall, F–score, and Kappa coefficient were used to evaluate 
the performance of CNN models and immunologists. Kappa 
coefficient utilised the cohen.kappa() from the concord pack-
age in the consistency analysis. Pearson’s chi-square test was 
applied to assess the differences in performance between the 
manual classification and the proposed ensemble learning 
model utilised the chisq.test. Statistical significance was set 
at p<0.01.

3 � Results

The implementation details of the CBAM-CNN model train-
ing were as follows: batch size, 32; epoch number, 50; and 
adaptive moment estimation (Adam) optimiser [43] was 
used to tune the parameter set � ; the initial learning rate 
was set to 5e − 4.

3.1 � Classification performance of the ensemble 
model

To demonstrate the effectiveness of our proposed model, six 
metrics (Accuracyavg, Precisionavg, Recallavg, F1–scoreavg, 
Kappa, and Time) were used to evaluate the classification 
performance of five independent CBAM-CNN models and 
the ensemble model. The corresponding performance of all 
the models is listed in Table 2 [44]. The classification per-
formance of independent original models was treated as the 
baseline for comparison with the CBAM-CNN models. The 
details in each category are described in the Supplemen-
tary Material Table S1. In the independent model, CBAM-
CNN achieved a better performance than the original CNN, 
and the highest accuracy was achieved by the CBAM-
Inception model (Accuracyavg=94.6%; F1–scoreavg=0.951; 
Kappa=0.925). The ensemble model with CBAM as the 
ideal optimisation method yielded the highest Accuracyavg 
of 99.8% and F1–scoreavg of 0.983 and Kappa of 0.991, 
compared to all the models.

3.2 � Clinical utility of ensemble model classification 
assistance

To verify the clinical utility of our proposed model, we con-
ducted a mind-machine comparison experiment [45]. This 
experiment contrasted the classification performance dif-
ferences among the proposed model, immunologists, and 
immunologists and re-classified using model assistance 
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(human–machine integration experiment), and especially, 
the classification performance of each category. The clas-
sification performances for each category and the average of 
the proposed model, three immunologists (Immunologist-1 
and Immunologist-2 with about 2 years of experience each, 
and Immunologist-3 with 5 years of experience), and that of 
immunologists with model assistance are shown in Table 3. 
The proposed model had a much higher classification perfor-
mance than the three immunologists (Accuracyavg: 99.8% vs. 
83.8%, 85.5%, 95.6%; F1–scoreavg: 0.983 vs. 0.478, 0.456, 
0.845; Kappa: 0.991 vs. 0.469, 0.500, 0.844; p<0.01). Nota-
bly, in the classification of the (3 +) category, our proposed 
model showed a more remarkable classification performance 
than the immunologist-avg (99.4% vs. 86%; F1–scoreavg: 
0.933 vs. 0.487; p<0.01). With model-assisted prediction, 
the performance was highly improved for all three immu-
nologists (Accuracyavg: 88.3% vs. 94.4%; Precisionavg: 0.588 
vs. 0.749; Recallavg: 0.599 vs. 0.776; F1–scoreavg: 0.593 vs. 
0.757; Kappa: 0.604 vs. 0.805; p<0.01). For the (4 +) cat-
egory classification, the F1 − score values achieved by the 
immunologists all exceeded 0.9 (F1–score: 0.954, 0.925, 
and 0.922; p<0.01). In particular, the time taken for model 
classification was 0.094s·image–1, which was approxi-
mately 60 times faster than that taken by the immunologists 
(Immunologistavg=5.528s·image–1).

Further, to reflect the results intuitively, confusion matri-
ces [46] were generated for the classification results of the 
ensemble model, immunologists, and immunologists with 
model assistance as shown in Fig. 3. Confusion matrices 
are cross-compared, predicted, and used for actual decision 
classes as a widespread approach in deep learning. In con-
fusion matrices, the abscissa represents the true label, and 
the ordinate represents the predicted label. In the red area, 
the numbers indicate the amount of data predicted for each 
category. The deeper red area indicates the larger amount 
of data predicted in the category, the deeper red area on the 
main diagonal indicates the higher accuracy of prediction, 
and the other lighter areas indicate a lower error rate. In 
the green area, the percentages in the right-most column 

represent the Precision of each category, the percentages 
in the bottom row represent the Recall of each category, 
and the percentage in the lower right corner represents total 
Accuracy. The deeper green area indicates better prediction 
performance. As shown in Fig. 3, the total accuracy of the 
immunologists was also improved (Accuracy: Imm-1, 59.5% 
vs. 73.3%, Imm-2, 89.0% vs. 92.3% and Imm-3, 89.0% vs. 
92.3%). In the model-assisted experiment, Immunologist-3 
achieved the highest accuracy (Accuracytotal = 92.3%), which 
was close that of the model (Accuracytotal = 99.4%).

4 � Discussion

This study presents a fast, fully automatic deep learning 
model based on CNNs for IARI classification. It is an end-
to-end hybrid processing method combining the ensemble 
model with the CBAM and RPV modules that can accurately 
divide the intensity of IARI into five categories. This deci-
sion-level fusion design dramatically improved the classifi-
cation efficiency and precisely fitted the IARI dataset com-
pared with the independent model. More importantly, the 
proposed model achieved better classification performance 
than the immunologists and effectively improved the clas-
sification accuracy of the immunologists.

Table 2 shows the results of the macro-averaged metrics 
of the single and ensemble models for IARI multi-classi-
fication. In the IARI classification, all the models achieve 
an Accuracyavg of more than 90% in the overall categories 
because the deep learning models can automatically mine 
the subtle and deep features related to the IARI, which can-
not be perceived manually. However, there are differences in 
the performance of the single models in different category 
classifications, as shown in the Supplementary Material 
Table S1, the accuracy of the ResNet model in the (-) and 
(3 +) categories were 77.6% and 84.7%, respectively, and 
the accuracy of the DenseNet model in the (-) category was 
only 79.2%. Additionally, compared with the single model, 
the ensemble model substantially improves the accuracy of 

Table 2   Performance of CNN models used for IARI intensity classification

Note: w/o represents CNN without CBAM; w represents CBAM-CNN; Ensemble Model denotes the results of the proposed model; “↑” indi-
cates that the result of CBAM-CNN is better than that of the original CNN

Method Accuracyavg (%) Precisionavg Recallavg F1–scoreavg Kappa Time(s)

w/o w w/o w w/o w w/o w w/o w w/o w

AlexNet 92.6 92.8 ↑ 0.905 0.897 0.955 0.965 ↑ 0.929 0.930 ↑ 0.919 0.921 ↑ 0.019 0.006
VGG 92.4 90.5 0.903 0.872 0.942 0.984 ↑ 0.922 0.925 ↑ 0.917 0.896 0.070 0.091
ResNet 91.3 93.0 ↑ 0.878 0.907 ↑ 0.954 0.960 ↑ 0.914 0.933 ↑ 0.905 0.924 ↑ 0.029 0.032
Inception 94.6 94.6 0.922 0.929 ↑ 0.974 0.975 ↑ 0.948 0.951 ↑ 0.941 0.941 0.023 0.077
DenseNet 92.9 93.1 ↑ 0.908 0.919 ↑ 0.953 0.927 0.930 0.923 0.923 0.925 ↑ 0.043 0.049
Ensemble Model 99.6 99.8 ↑ 0.972 0.975 ↑ 0.987 0.991 ↑ 0.979 0.983 ↑ 0.987 0.991 ↑ 0.078 0.094
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classification both in single categories and overall. As shown 
in Table 3, the accuracies of all categories were above 99%, 
and the maximum improvement in the overall accuracy was 
up to 8.3% (Accuracyavg: ResNet 91.3% vs. ensemble model 
99.6%). The ensemble model is efficient for the improve-
ment of the model fit; however, it is not sensitive to outliers 
for reducing the decision boundary shift [47–51]. In addi-
tion, the ensemble model, by collective decision mecha-
nism, focuses on synthesizing information from several 
sub-models with different structures and has been shown to 
reduce average error and combine the strengths of models in 
the exploration of diverse data patterns [52–54]. However, 
the addition of a poorly performing model will not reduce 
the overall model classification skill, because the ensemble 

model has a net gain compared to the single models [55, 56]. 
Given the above, the ensemble model can reduce the risk of 
relying on a single prediction distribution and extract richer 
semantic feature information than the single CNN models 
(such as each sub-model in the training process has a differ-
ent probability for boundary regions in pixel-level), which 
are beneficial in classification tasks to or the achievement 
of better performance to improve classification accuracy 
[57–62].

As shown in Table 2, CBAM has a limited effect on 
overall model performance improvement in that it slightly 
increases the accuracy of the models except that of the VGG 
and Inception models. But CBAM reduces the cross-adja-
cent category errors, especially those of the CBAM-CNN 

Table 3   Comparison between the ensemble models and three immunologists in each sub-category

Notes: Imm-n denotes Immunologist-1, Immunologist-2, Immunologist-3, and Immunologist-avg; w/o represents the immunologist without 
model assistance; w represents the immunologist with model assistance; “↑” indicates that the result of the immunologist with model assistance 
is better than that of the immunologists

Method Category Accuracy (%) Precision Recall F1–score Kappa Time(s)

w/o w w/o w w/o w w/o w w/o w -

Imm-1 (-) 84.4 88.7 ↑ 0.965 0.989 ↑ 0.631 0.723 ↑ 0.763 0.835 ↑ - - -
(1 +) 75.5 80.7 ↑ 0.146 0.327 ↑ 0.152 0.348 ↑ 0.149 0.337 ↑ - - -
(2 +) 86.5 93.3 ↑ 0.059 0.000 0.143 0.000 0.084 - - - -
(3 +) 81.3 87.1 ↑ 0.254 0.382 ↑ 0.692 1.000 ↑ 0.372 0.553 ↑ - - -
(4 +) 91.4 96.9 ↑ 0.966 0.972 ↑ 0.773 0.936 ↑ 0.859 0.954 ↑ - - -
avg 83.8 89.3 ↑ 0.478 0.534 ↑ 0.478 0.601 ↑ 0.478 0.566 ↑ 0.469 0.637 ↑ 5.084

Imm-2 (-) 83.1 99.1 ↑ 0.838 0.985 ↑ 0.715 0.992 ↑ 0.772 0.988 ↑ - - -
(1 +) 81.3 98.2 ↑ 0.174 0.935 ↑ 0.087 0.935 ↑ 0.116 0.935 ↑ - - -
(2 +) 89.6 97.2 ↑ 0.045 0.778 ↑ 0.071 0.500 ↑ 0.055 0.609 ↑ - - -
(3 +) 83.4 94.5 ↑ 0.274 0.611 ↑ 0.654 0.846 ↑ 0.386 0.710 ↑ - - -
(4 +) 90.2 95.1 ↑ 0.861 0.952 ↑ 0.845 0.900 ↑ 0.853 0.925 ↑ - - -
avg 85.5 96.8 ↑ 0.438 0.852 ↑ 0.474 0.835 ↑ 0.456 0.843 ↑ 0.500 0.886 ↑ 7.5

Imm-3 (-) 96.6 100 ↑ 0.922 1.000 ↑ 1.000 1.000 0.959 1.000 ↑ - - -
(1 +) 95.1 98.5 ↑ 1.000 1.000 0.652 0.891 ↑ 0.789 0.942 ↑ - - -
(2 +) 97.9 97.9 0.769 0.769 0.714 0.714 0.740 0.740 - - -
(3 +) 93.3 93.3 0.542 0.542 1.000 1.000 0.703 0.703 - - -
(4 +) 95.1 95.1 1.000 1.000 0.855 0.855 0.922 0.922 - - -
avg 95.6 97.0 ↑ 0.847 0.862 ↑ 0.844 0.892 ↑ 0.845 0.861 ↑ 0.844 0.892 ↑ 4

Imm-avg (-) 88 95.9 ↑ 0.908 0.991 ↑ 0.782 0.905 ↑ 0.831 0.941 ↑ - - -
(1 +) 84 92.5 ↑ 0.440 0.754 ↑ 0.297 0.725 ↑ 0.351 0.738 ↑ - - -
(2 +) 91.3 96.1 ↑ 0.291 0.516 ↑ 0.309 0.405 ↑ 0.293 0.675 ↑ - - -
(3 +) 86 91.6 ↑ 0.357 0.512 ↑ 0.782 0.949 ↑ 0.487 0.655 ↑ - - -
(4 +) 92.2 95.7 ↑ 0.942 0.959 ↑ 0.824 0.912 ↑ 0.878 0.935 ↑ - - -
avg 88.3 94.4 ↑ 0.588 0.749 ↑ 0.599 0.776↑ 0.593 0.757 ↑ 0.604 0.805 ↑ 5.528

Model (-) 100 100 1 1 1 1 1 1 - - -
(1 +) 99.1 99.4↑ 1 1 0.935 0.957↑ 0.966 0.978↑ - - -
(2 +) 99.7 99.4 0.933 0.875 1 1 0.965 0.933 - - -
(3 +) 99.3 100↑ 0.929 1↑ 1 1 0.963 1↑ - - -
(4 +) 100 100 1 1 1 1 1 1 - - -
avg 99.6 99.8 ↑ 0.972 0.975 ↑ 0.987 0.991 ↑ 0.979 0.983 ↑ 0.987 0.991 ↑ 0.094
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Fig. 3   Confusion matrices for 
IARI intensity classification; (a) 
The proposed ensemble model; 
(b) Immunologist-1 manually 
and with model assistance; 
(c) Immunologist-2 manually 
and with model assistance; 
(d) Immunologist-3 manually 
and with model assistance
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models, thus improving the accuracy of the (4 +) category 
shown in the Supplementary Material Table S1 and reduc-
ing the error rate of blood artefacts being mistaken as (4 +) 
category. CBAM flexibly introduced into various models, 
partially reserves the channel interaction information and 
spatial location information while gathering clues about 
actual class object features and giving a meaningful focus 
for the input images by element-wise operations [63–74]. 
Thus, the CBAM-CNN models bring more robust and plau-
sible classification decision-making. Table 3 shows that the 
ensemble model with CBAM, which we proposed, gives the 
best performance among all models both in the single cat-
egories and in the overall.

We further compared the classification performance of the 
immunologists and our deep learning model. As illustrated 
in Table 3, the performance of the model was higher than 
the average performance of three junior immunologists with 
varying experience. For the immunologists, (-) and (4 +) 
categories were relatively easier to classify, whereas (1 +), 
(2 +), and (3 +) classification were more prone to errors. 
The results show that the more experienced immunologist 
had a classification of higher accuracy. The immunologists 
also conducted reclassification with the assistance of our 
proposed model to verify the clinical utility of the model. 
In the (1 +), (2 +), and (3 +) categories, the performance of 
immunologists was greatly improved; especially for immu-
nologists with relatively low experience, the auxiliary effect 
is more obvious. Further, analysis of the time required for 
classification using the model and by the immunologists 
showed that the calculation time of the proposed model is 
at the millisecond level and is 60 times faster than the time 
needed manually. Thus, the model holds great potential for 
real-time assistance, especially for junior immunologists.

The confusion matrices of the ensemble model for clas-
sification tasks clearly and intuitively showed the clas-
sification performance of the models and immunologists 
across each category. Higher accuracy rates generally indi-
cate better results, but FP and FN are also important and 
should not be ignored in clinical medicine. Reducing the 
ratio of FP to FN can significantly reduce the possibility 
of medical errors. There were no serious errors in the IARI 
classification using the ensemble models: no strongly posi-
tive IARI ((4 +) category) was identified as poorly posi-
tive ((1 +), (2 +), (3 +) categories) or negative category 
((-) category), and no negative IARI was identified as a 
positive category. The model also did not show across-
adjacent category errors within the poorly positive catego-
ries. However, immunologists usually misclassified these 
samples as (-) and (1 +), (3 +), and (4 +), and the internal 
categories of poor positive samples, resulting in unsatis-
factory classification results. Our analyses revealed that 
automatic classification is feasible and reliable and can 
significantly outperform the immunologists. We observed 

that the performance of the immunologists was highly 
improved with assistance of the proposed model: the main 
diagonal became deeper, indicating that the accuracy of 
each category increased; the other areas became lighter 
indicating that the errors in the across-adjacent categories 
were reduced; the green area became deeper, indicating an 
improvement in Accuracytotal, Precision, and Recall. These 
results demonstrate that our proposed model may be used 
as a reference for assisting immunologists.

In addition, in this experiment, batch size was set to 32 
using the data-parallelization strategy to adapt to the IARI 
dataset, which can train the CNN models in the correct 
direction of change of gradients to be able to accurately 
classify IARI [75–78]. The learning rate of 5e-4 with the 
fixed batch size can keep the generalization performance 
from being degraded and makes CNN models achieve the 
best performance because of small batch sizes requiring 
small learning rate [79–81]. The epoch was set at 50 to 
terminate the training because the models all achieved 
stable convergence. The models using the well-designed 
parameters are robust and achieve good results.

However, our research had some limitations. First, our 
datasets were derived from the same source, and the AHG 
test was performed in the same laboratory, which con-
tained limited variances; thus, the generalisation of the 
model needs to be externally verified at multiple centres. 
Second, the model could only differentiate the negative 
reaction, poor positive reaction, and strongly positive reac-
tion. In clinical reality, there is a suspected category, ( ±), 
which is indistinguishable from negative and poor positive 
reactions by immunologists that have insufficient images to 
build the CNN model. Thus, in future, extending the data-
set to multivendor and multi-centre platforms may further 
improve the performance of the model. Simultaneously, 
we will qualitatively distinguish the boundary between ( ±) 
and other classes described in this study.

5 � Conclusion

In this study, we presented a deep ensemble learning 
model based on CNN models that can accurately clas-
sify IARI into multiple categories. This model can aid 
immunologists in differentiating distinct clinical patients 
by providing an objective and accurate evaluation of IARI 
categories, which could reduce the risk of haemolytic dis-
eases. The model holds great potential in the field of fully 
automatic machinery and holds promise for promoting 
intelligent AHG test classification.
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