Skip to main content

Advertisement

Log in

The evaluation of artificial talus implant on ankle joint contact characteristics: a finite element study based on four subjects

  • Original Article
  • Published:
Medical & Biological Engineering & Computing Aims and scope Submit manuscript

Abstract

Customized talus implants have been regarded as a better treatment alternative to talus avascular necrosis than traditional surgical fusion because of its ability to maintain joint mobility while ameliorating pain. Despite the use of ankle hemiarthroplasty clinically, the cartilage contact characteristics of adjacent bones remain unclear. This study aims to use finite element modeling to evaluate the contact characteristics of three types of cobalt-chrome talus implants in three postures, in four subjects. This study also compared the contact area, contact pressure, and peak contact pressure of the implant models with a reference biological model. Among the various biological and implant models, our results showed that the biological models generally had the largest contact areas and smallest peak contact pressures, whereas the implant-type models had smaller contact areas and relatively larger peak contact pressure. Moreover, among the three implant types, customized-scale models showed a larger total contact area than that of the SSM-scale and universal-scale models, but their variation was relatively limited. The results from this study can have significance in future endeavors into ankle joint modeling, as well as being able to improve implant design to enhance recovery outcomes for patients who may benefit from talar replacement.

Graphical abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. Pearce DH, Mongiardi CN, Fornasier VL, Daniels TR (2005) Avascular necrosis of the talus: a pictorial essay. Radiographics 25:399–410. https://doi.org/10.1148/rg.252045709

    Article  PubMed  Google Scholar 

  2. Katsui R, Takakura Y, Taniguchi A, Tanaka Y (2019) Ceramic artificial talus as the initial treatment for comminuted talar fractures [formula: see text]. Foot Ankle Int 1071100719875723. https://doi.org/10.1177/1071100719875723

  3. Shnol H, LaPorta GA (2018) 3D printed total talar replacement: a promising treatment option for advanced arthritis, avascular osteonecrosis, and osteomyelitis of the ankle. Clin Podiatr Med Surg 35:403–422. https://doi.org/10.1016/j.cpm.2018.06.002

    Article  PubMed  Google Scholar 

  4. Liu T, Jomha NM, Adeeb S, et al (2020) Investigation of the average shape and principal variations of the human talus bone using statistic shape model. Front BioengBiotechnol 8:. https://doi.org/10.3389/fbioe.2020.00656

  5. Fortin PT, Balazsy JE (2001) Talus fractures: evaluation and treatment. J Am Acad Orthop Surg 9:14

    Article  Google Scholar 

  6. Imam MA, Matthana A, Kim JW, Nabil M (2017) A 24-month follow-up of a custom-made suture-button assembly for syndesmotic injuries of the ankle. J Foot Ankle Surg 56:744–747. https://doi.org/10.1053/j.jfas.2017.02.010

    Article  PubMed  PubMed Central  Google Scholar 

  7. Tonogai I, Hamada D, Yamasaki Y, et al (2017) Custom-made alumina ceramic total talar prosthesis for idiopathic aseptic necrosis of the talus: report of two cases. In: Case reports in orthopedics. https://www.hindawi.com/journals/crior/2017/8290804/. Accessed 26 Dec 2019

  8. Islam K, Dobbe A, Duke K et al (2014) Three-dimensional geometric analysis of the talus for designing talar prosthetics. Proc Inst Mech Eng H 228:371–378. https://doi.org/10.1177/0954411914527741

    Article  PubMed  Google Scholar 

  9. Trovato A, El-Rich M, Adeeb S et al (2017) Geometric analysis of the talus and development of a generic talar prosthetic. Foot Ankle Surg 23:89–94. https://doi.org/10.1016/j.fas.2016.12.002

    Article  PubMed  Google Scholar 

  10. Anderson DD, Goldsworthy JK, Shivanna K et al (2006) Intra-articular contact stress distributions at the ankle throughout stance phase-patient-specific finite element analysis as a metric of degeneration propensity. Biomech Model Mechanobiol 5:82–89. https://doi.org/10.1007/s10237-006-0025-2

    Article  PubMed  PubMed Central  Google Scholar 

  11. Kimizuka M, Kurosawa H, Fukubayashi T (1980) Load-bearing pattern of the ankle joint. Arch Orth Traum Surg 96:45–49. https://doi.org/10.1007/BF01246141

    Article  CAS  Google Scholar 

  12. Millington S, Grabner M, Wozelka R et al (2007) A stereophotographic study of ankle joint contact area. J Orthop Res 25:1465–1473. https://doi.org/10.1002/jor.20425

    Article  PubMed  Google Scholar 

  13. Macko VW, Matthews LS, Zwirkoski P, Goldstein SA (1991) The joint-contact area of the ankle. The contribution of the posterior malleolus. J Bone Joint Surg Am 73:347–351

    Article  CAS  Google Scholar 

  14. Brown TD, Hurlbut PT, Hale JE et al (1994) Effects of imposed hindfoot constraint on ankle contact mechanics for displaced lateral malleolar fractures. J Orthop Trauma 8:511–519

    Article  CAS  Google Scholar 

  15. Stevens BW, Dolan CM, Anderson JG, Bukrey CD (2007) Custom talar prosthesis after open talar extrusion in a pediatric patient. Foot Ankle Int 28:933–938. https://doi.org/10.3113/FAI.2007.0933

    Article  PubMed  Google Scholar 

  16. Wagener J, Gross CE, Schweizer C, et al (2017) Custom-made total ankle arthroplasty for the salvage of major talar bone loss. Bone Joint J 99-B:231–236. https://doi.org/10.1302/0301-620X.99B2.BJJ-2016-0504.R2

  17. Anderson DD, Tochigi Y, Rudert MJ et al (2010) Effect of implantation accuracy on ankle contact mechanics with a metallic focal resurfacing implant. J Bone Joint Surg Am 92:1490–1500. https://doi.org/10.2106/JBJS.I.00431

    Article  PubMed  PubMed Central  Google Scholar 

  18. Reggiani B, Leardini A, Corazza F, Taylor M (2006) Finite element analysis of a total ankle replacement during the stance phase of gait. J Biomech 39:1435–1443. https://doi.org/10.1016/j.jbiomech.2005.04.010

    Article  CAS  PubMed  Google Scholar 

  19. Espinosa N, Walti M, Favre P, Snedeker JG (2010) Misalignment of total ankle components can induce high joint contact pressures. J Bone Joint Surg Am 92:1179–1187. https://doi.org/10.2106/JBJS.I.00287

    Article  CAS  PubMed  Google Scholar 

  20. Terrier A, Larrea X, Guerdat J, Crevoisier X (2014) Development and experimental validation of a finite element model of total ankle replacement. J Biomech 47:742–745. https://doi.org/10.1016/j.jbiomech.2013.12.022

    Article  PubMed  Google Scholar 

  21. Trovato AN, Bornes TD, El-Rich M et al (2018) Analysis of a generic talar prosthetic with a biological talus: a cadaver study. J Orthop 15:230–235. https://doi.org/10.1016/j.jor.2018.01.015

    Article  PubMed  PubMed Central  Google Scholar 

  22. Liu T, Ead M, Cruz SDV et al (2022) Polycarbonate-urethane coating can significantly improve talus implant contact characteristics. J Mech Behav Biomed Mater 125:104936. https://doi.org/10.1016/j.jmbbm.2021.104936

    Article  CAS  PubMed  Google Scholar 

  23. Anderson DD, Goldsworthy JK, Li W et al (2007) Physical validation of a patient-specific contact finite element model of the ankle. J Biomech 40:1662–1669. https://doi.org/10.1016/j.jbiomech.2007.01.024

    Article  PubMed  PubMed Central  Google Scholar 

  24. Akrami M, Qian Z, Zou Z et al (2018) Subject-specific finite element modelling of the human foot complex during walking: sensitivity analysis of material properties, boundary and loading conditions. Biomech Model Mechanobiol 17:559–576. https://doi.org/10.1007/s10237-017-0978-3

    Article  PubMed  Google Scholar 

  25. Al Jabbari YS (2014) Physico-mechanical properties and prosthodontic applications of Co-Cr dental alloys: a review of the literature. J Adv Prosthodont 6:138–145. https://doi.org/10.4047/jap.2014.6.2.138

    Article  PubMed  PubMed Central  Google Scholar 

  26. Mondal S, Ghosh R (2019) Effects of implant orientation and implant material on tibia bone strain, implant–bone micromotion, contact pressure, and wear depth due to total ankle replacement. Proc Inst Mech Eng H 233:318–331. https://doi.org/10.1177/0954411918823811

    Article  PubMed  Google Scholar 

  27. Robinson DL, Kersh ME, Walsh NC et al (2016) Mechanical properties of normal and osteoarthritic human articular cartilage. J Mech Behav Biomed Mater 61:96–109. https://doi.org/10.1016/j.jmbbm.2016.01.015

    Article  CAS  PubMed  Google Scholar 

  28. Brown CP, Nguyen TC, Moody HR, Crawford RW, Oloyede A (2009) Assessment of common hyperelastic constitutive equations for describing normal and osteoarthritic articular cartilage. Proceedings of the Institution of Mechanical Engineers, Part H: Journal of Engineering in Medicine 223(6):643–652. https://doi.org/10.1243/09544119JEIM546

    Article  CAS  Google Scholar 

  29. Wang CL, Cheng CK, Chen CW et al (1995) Contact areas and pressure distributions in the subtalar joint. J Biomech 28:269–279. https://doi.org/10.1016/0021-9290(94)00076-g

    Article  CAS  PubMed  Google Scholar 

  30. Wu JZ, Herzog W, Epstein M (1998) Effects of inserting a pressensor film into articular joints on the actual contact mechanics. J Biomech Eng 120:655–659. https://doi.org/10.1115/1.2834758

    Article  CAS  PubMed  Google Scholar 

  31. Fregly BJ, Sawyer WG (2003) Estimation of discretization errors in contact pressure measurements. J Biomech 36:609–613. https://doi.org/10.1016/s0021-9290(02)00436-0

    Article  PubMed  Google Scholar 

  32. Steffensmeier SJ, Saltzman CL, Berbaum KS, Brown TD (1996) Effects of medial and lateral displacement calcaneal osteotomies on tibiotalar joint contact stresses. J Orthop Res 14:980–985. https://doi.org/10.1002/jor.1100140619

    Article  CAS  PubMed  Google Scholar 

  33. Vrahas M, Fu F, Veenis B (1994) Intraarticular contact stresses with simulated ankle malunions. J Orthop Trauma 8:159–166. https://doi.org/10.1097/00005131-199404000-00014

    Article  CAS  PubMed  Google Scholar 

  34. Berkmortel C, Langohr GDG, King G, Johnson J (2020) Hemiarthroplasty implants should have very low stiffness to optimize cartilage contact stress. J Orthop Res 38:1719–1726. https://doi.org/10.1002/jor.24610

    Article  CAS  PubMed  Google Scholar 

  35. Bahr R, Pena F, Shine J et al (1998) Ligament force and joint motion in the intact ankle: a cadaveric study. Knee Surg Sports Traumatol Arthrosc 6:115–121. https://doi.org/10.1007/s001670050083

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

This study was funded by the Edmonton Orthopaedic Research Committee.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Tao Liu.

Ethics declarations

Ethics approval

Ethical approval for this human study was provided by the University of Alberta Health Ethics Review Board (Pro00026057) with a waiver of individual consent.

Additional information

Publisher's note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Appendix 1

Appendix 1

1.1 Results for Subject 2

Figure 10

Fig. 10
figure 10figure 10

Scaled contact stress distribution on the cartilage for subject 2 in DF (a); NS (c); and PF (e); the contact area of the adjacent cartilage surface and area percentage increasing in 0.25 MPa intervals in DF (b), NS (d) and PF (f)

1.2 Results for Subject 3

Figure 11

Fig. 11
figure 11figure 11

Scaled contact stress distribution on the cartilage for subject 3 in DF (a); NS (c); and PF (e); the contact area of the adjacent cartilage surface and area percentage increasing in 0.25 MPa intervals in DF (b), NS (d) and PF (f)

1.3 Results for Subject 4

Figure 12

Fig. 12
figure 12figure 12

Scaled contact stress distribution on the cartilage for subject 4 in DF (a); NS (c); and PF (e); the contact area of the adjacent cartilage surface and area percentage increasing in 0.25 MPa intervals in DF (b), NS (d) and PF (f)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Liu, T., Jomha, N., Adeeb, S. et al. The evaluation of artificial talus implant on ankle joint contact characteristics: a finite element study based on four subjects. Med Biol Eng Comput 60, 1139–1158 (2022). https://doi.org/10.1007/s11517-022-02527-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11517-022-02527-x

Keywords

Navigation