Skip to main content
Log in

Modeling the dynamic brain network representation for autism spectrum disorder diagnosis

  • Original Article
  • Published:
Medical & Biological Engineering & Computing Aims and scope Submit manuscript

Abstract

The dynamic functional connectivity analysis provides valuable information for understanding functional brain activity underlying different cognitive processes. Modeling spatio-temporal dynamics in functional brain networks is critical for underlying the functional mechanism of autism spectrum disorder (ASD). In our study, we propose a machine learning approach for the classification of neurological disorders while providing an interpretable framework, which thoroughly captures spatio-temporal features in resting-state functional magnetic resonance imaging (rs-fMRI) data. Specifically, we first transform rs-fMRI time-series into temporal multi-graph using the sliding window technique. A temporal multi-graph clustering is then designed to eliminate the inconsistency of the temporal multi-graph series. Then, a graph structure-aware LSTM (GSA-LSTM) is further proposed to capture the spatio-temporal embedding for temporal graphs. Furthermore, The proposed GSA-LSTM can not only capture discriminative features for prediction but also impute the incomplete graphs for the temporal multi-graph series. Extensive experiments on the autism brain imaging data exchange (ABIDE) dataset demonstrate that the proposed dynamic brain network embedding learning outperforms the state-of-the-art brain network classification models. Furthermore, the obtained clustering results are consistent with the previous neuroimaging-derived evidence of biomarkers for autism spectrum disorder (ASD).

Graphical abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13

Similar content being viewed by others

References

  1. Nogay HS, Adeli H (2020) Machine learning (ML) for the diagnosis of autism spectrum disorder (ASD) using brain imaging. Reviews in the Neurosciences 31(8):825–841

    Article  Google Scholar 

  2. Bajestani GS, Behrooz M, Khani AG, Nouri-Baygi M, Mollaei A (2019) Diagnosis of autism spectrum disorder based on complex network features. Computer Methods and Programs in Biomedicine 177:277–283

    Article  Google Scholar 

  3. Heinsfeld AS, Franco AR, Craddock RC, Buchweitz A, Meneguzzi F (2018) Identification of autism spectrum disorder using deep learning and the abide dataset. NeuroImage: Clinical 17:16–23

    Article  Google Scholar 

  4. Maenner MJ, Shaw KA, Baio J et al (2020) Prevalence of autism spectrum disorder among children aged 8 years-autism and developmental disabilities monitoring network, 11 sites, united states, 2016. MMWR Surveillance Summaries 69(4):1

    Article  Google Scholar 

  5. Kang W, Lin L, Zhang B, Shen X, Wu S, Initiative ADN et al (2021) Multi-model and multi-slice ensemble learning architecture based on 2D convolutional neural networks for Alzheimer’s disease diagnosis. Computers in Biology and Medicine 136:104678

    Article  Google Scholar 

  6. Yan Y, Zhu J, Duda M, Solarz E, Sripada C, Koutra D (2019) Groupinn: grouping-based interpretable neural network for classification of limited, noisy brain data. In: Proceedings of the 25th ACM SIGKDD international conference on knowledge discovery & data mining. pp 772–782

  7. Van Den Heuvel MP, Pol HEH (2010) Exploring the brain network: a review on resting-state fmri functional connectivity. European Neuropsychopharmacology 20(8):519–534

    Article  Google Scholar 

  8. Jiang H, Cao P, Xu M, Yang J, Zaiane O (2020) Hi-GCN: a hierarchical graph convolution network for graph embedding learning of brain network and brain disorders prediction. Computers in Biology and Medicine 127:104096

    Article  Google Scholar 

  9. Kipf TN, Welling M (2017) Semi-supervised classification with graph convolutional networks. International Conference on Learning Representations (ICLR)

  10. Hutchison RM, Womelsdorf T, Allen EA, Bandettini PA, Calhoun VD, Corbetta M, Della Penna S, Duyn JH, Glover GH, Gonzalez-Castillo J et al (2013) Dynamic functional connectivity: promise, issues, and interpretations. Neuroimage 80:360–378

    Article  Google Scholar 

  11. Wang M, Lian C, Yao D, Zhang D, Liu M, Shen D (2019) Spatial-temporal dependency modeling and network hub detection for functional MRI analysis via convolutional-recurrent network. IEEE Transactions on Biomedical Engineering 67(8):2241–2252

    Article  Google Scholar 

  12. Jie B, Liu M, Shen D (2018) Integration of temporal and spatial properties of dynamic connectivity networks for automatic diagnosis of brain disease. Medical Image Analysis 47:81–94

    Article  Google Scholar 

  13. Wang M, Huang J, Liu M, Zhang D (2021) Modeling dynamic characteristics of brain functional connectivity networks using resting-state functional MRI. Medical Image Analysis 71:102063

    Article  Google Scholar 

  14. Gadgil S, Zhao Q, Pfefferbaum A, Sullivan, EV, Adeli, E, Pohl, KM (2020) Spatio-temporal graph convolution for resting-state fmri analysis. In: International conference on medical image computing and computer-assisted intervention. Springer pp 528–538

  15. Azevedo T, Campbell A, Romero-Garcia R, Passamonti L, Bethlehem RA, Liò P, Toschi N (2020) A deep graph neural network architecture for modelling spatio-temporal dynamics in resting-state functional MRI data, bioRxiv

  16. Ingalhalikar M, Shinde S, Karmarkar A, Rajan A, Rangaprakash D, Deshpande G (2021) Functional connectivity-based prediction of autism on site harmonized ABIDE dataset. IEEE Transactions on Biomedical Engineering

  17. Yu M, Linn KA, Cook PA, Phillips ML, McInnis M, Fava M, Trivedi MH, Weissman MM, Shinohara RT, Sheline YI (2018) Statistical harmonization corrects site effects in functional connectivity measurements from multi-site fMRI data. Human brain mapping 39(11):4213–4227

    Article  Google Scholar 

  18. Wang M, Zhang D, Huang J, Yap P-T, Shen D, Liu M (2019) Identifying autism spectrum disorder with multi-site fmri via low-rank domain adaptation. IEEE Transactions on Medical Imaging 39(3):644–655

    Article  Google Scholar 

  19. Kana RK, Sartin EB, Stevens C Jr, Deshpande HD, Klein C, Klinger MR, Klinger LG (2017) Neural networks underlying language and social cognition during self-other processing in autism spectrum disorders. Neuropsychologia 102:116–123

    Article  Google Scholar 

  20. Hegarty JP, Ferguson BJ, Zamzow RM, Rohowetz LJ, Johnson JD, Christ SE, Beversdorf DQ (2017) Beta-adrenergic antagonism modulates functional connectivity in the default mode network of individuals with and without autism spectrum disorder. Brain Imaging and Behavior 11(5):1278–1289

    Article  Google Scholar 

  21. Washington SD, Gordon EM, Brar J, Warburton S, Sawyer AT, Wolfe A, Mease-Ference ER, Girton L, Hailu A, Mbwana J et al (2014) Dysmaturation of the default mode network in autism. Human Brain Mapping 35(4):1284–1296

    Article  Google Scholar 

  22. Kudo T, Maeda E, Matsumoto Y (2004) An application of boosting to graph classification. Advances in Neural Information Processing Systems 17

  23. Cao B, He L, Wei X, Xing M, Yu PS, Klumpp H, Leow AD (2017) t-bne: tensor-based brain network embedding. In: Proceedings of the 2017 SIAM International Conference on Data Mining. SIAM, pp 189–197

  24. Eslami T, Mirjalili V, Fong A, Laird AR, Saeed F (2019) ASD-DiagNet: a hybrid learning approach for detection of autism spectrum disorder using fMRI data. Frontiers in Neuroinformatics 13:70

    Article  Google Scholar 

  25. Yao D, Liu M, Wang M, Lian C, Wei J, Sun L, Sui J, Shen D (2019) Triplet graph convolutional network for multi-scale analysis of functional connectivity using functional MRI. In: International workshop on graph learning in medical imaging. Springer, pp 70–78

  26. Monti RP, Hellyer P, Sharp D, Leech R, Anagnostopoulos C, Montana G (2014) Estimating time-varying brain connectivity networks from functional MRI time series. NeuroImage 103:427–443

    Article  Google Scholar 

  27. Cai B, Zhang G, Zhang A, Stephen JM, Wilson TW, Calhoun VD, Wang Y-P (2018) Capturing dynamic connectivity from resting state fMRI using time-varying graphical lasso. IEEE Transactions on Biomedical Engineering 66(7):1852–1862

    Article  Google Scholar 

  28. Wee C-Y, Yang S, Yap P-T, Shen D (2016) Sparse temporally dynamic resting-state functional connectivity networks for early MCI identification. Brain Imaging and Behavior 10(2):342–356

    Article  Google Scholar 

  29. Tang W, Lu Z, Dhillon IS (2009) Clustering with multiple graphs. In: 2009 ninth IEEE international conference on data mining. IEEE, pp 1016–1021

  30. Di Martino A, Yan C-G, Li Q, Denio E, Castellanos FX, Alaerts K, Anderson JS, Assaf M, Bookheimer SY, Dapretto M et al (2014) The autism brain imaging data exchange: towards a large-scale evaluation of the intrinsic brain architecture in autism. Molecular Psychiatry 19(6):659–667

    Article  Google Scholar 

  31. Cameron C, Sharad S, Brian C, Ranjeet K, Satrajit G, Chaogan Y, Qingyang L, Daniel L, Joshua V, Randal B, Stanley C, Maarten M, Clare K, Adriana DM, Francisco C, Michael M (2013) Towards automated analysis of connectomes: the configurable pipeline for the analysis of connectomes (c-pac). Frontiers in Neuroinformatics 7

  32. Kreutzer JS, DeLuca J, Caplan B (2011) Encyclopedia of clinical neuropsychology. Springer

  33. Ktena SI, Parisot S, Ferrante E, Rajchl M, Lee M, Glocker B, Rueckert D (2018) Metric learning with spectral graph convolutions on brain connectivity networks. NeuroImage 169:431–442

    Article  Google Scholar 

  34. Ma Y, Wang S, Aggarwal CC, Tang J (2019) Graph convolutional networks with eigenpooling. In: Proceedings of the 25th ACM SIGKDD international conference on knowledge discovery & data mining. pp 723–731

  35. Battaglia PW, Hamrick JB, Bapst V, Sanchez-Gonzalez A, Zambaldi V, Malinowski M, Tacchetti A, Raposo D, Santoro A, Faulkner R, et al (2018) Relational inductive biases, deep learning, and graph networks. arXiv:1806.01261

  36. Kawahara J, Brown CJ, Miller SP, Booth BG, Chau V, Grunau RE, Zwicker JG, Hamarneh G (2017) BrainNetCNN: convolutional neural networks for brain networks; towards predicting neurodevelopment. NeuroImage 146:1038–1049

    Article  Google Scholar 

  37. Li X, Zhou Y, Dvornek N, Zhang M, Gao S, Zhuang J, Scheinost D, Staib LH, Ventola P, Duncan JS (2021) BrainGNN: interpretable brain graph neural network for fMRI analysis. Medical Image Analysis 74:102233

    Article  Google Scholar 

  38. Parisot S, Ktena SI, Ferrante E, Lee M, Moreno RG, Glocker B, Rueckert D (2017) Spectral graph convolutions for population-based disease prediction. In: International conference on medical image computing and computer-assisted intervention. Springer, pp 177–185

  39. Lawrence KE, Hernandez LM, Bowman HC, Padgaonkar NT, Fuster E, Jack A, Aylward E, Gaab N, Van Horn JD, Bernier RA et al (2020) Sex differences in functional connectivity of the salience, default mode, and central executive networks in youth with asd. Cerebral Cortex 30(9):5107–5120

    Article  Google Scholar 

  40. Menon V (2011) Large-scale brain networks and psychopathology: a unifying triple network model. Trends in Cognitive Sciences 15(10):483–506

    Article  Google Scholar 

  41. Lombardo MV, Eyler L, Moore A, Datko M, Barnes CC, Cha D, Courchesne E, Pierce K (2019) Default mode-visual network hypoconnectivity in an autism subtype with pronounced social visual engagement difficulties. elife 8:e47427

    Article  CAS  Google Scholar 

  42. Nebel MB, Eloyan A, Nettles CA, Sweeney KL, Ament K, Ward RE, Choe AS, Barber AD, Pekar JJ, Mostofsky SH (2016) Intrinsic visual-motor synchrony correlates with social deficits in autism. Biological Psychiatry 79(8):633–641

    Article  Google Scholar 

Download references

Funding

This research was supported by the National Natural Science Foundation of China (No. 62076059) and the Science Project of Liaoning Province (2021-MS-105).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Peng Cao.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Cao, P., Wen, G., Liu, X. et al. Modeling the dynamic brain network representation for autism spectrum disorder diagnosis. Med Biol Eng Comput 60, 1897–1913 (2022). https://doi.org/10.1007/s11517-022-02558-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11517-022-02558-4

Keywords

Navigation