Skip to main content
Log in

Effects of cervicothoracic postures on the stiffness of trapezius muscles

  • Original Article
  • Published:
Medical & Biological Engineering & Computing Aims and scope Submit manuscript

Abstract

The purposes of this study were to (1) examine the effects of different cervicothoracic postures on the stiffness of trapezius muscles and (2) compare the stiffness of the dominant and non-dominant trapezius muscles. Twenty-one healthy participants joined in this project. After maintaining different cervicothoracic postures for 2 min, MyotonPRO was used to measure the stiffness of the trapezius. The results showed that (1) the stiffness of trapezius muscles was significantly affected by different cervicothoracic postures. With the increase of neck flexion angle, the stiffness of the trapezius muscles increased (p < 0.05). The muscle stiffness of upper back relaxed was higher than that of upper back upright (p < 0.05). (2) The trapezius muscles on the non-dominant side were stiffer than that on the dominant side (p < 0.05). Poor cervicothoracic postures will increase the stiffness of upper, middle and lower trapezius muscles. Keeping the neck and upper back upright will keep the muscle stiffness at a low level, so as to reduce the occurrence of neck and shoulder fatigue and pain.

Graphical abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  1. Tas S, Korkusuz F, Erden Z (2018) Neck muscle stiffness in participants with and without chronic neck pain: a shear-wave elastography study. J Manipulative Physiol Ther 41(7):580–588. https://doi.org/10.1016/j.jmpt.2018.01.007

    Article  PubMed  Google Scholar 

  2. Namwongsa S, Puntumetakul R, Neubert MS, Boucaut R (2018) Factors associated with neck disorders among university student smartphone users. Work 61(3):367–378. https://doi.org/10.3233/WOR-182819

    Article  PubMed  Google Scholar 

  3. Ning X, Huang Y, Hu B, Nimbarte AD (2015) Neck kinematics and muscle activity during mobile device operations. Int J Ind Ergonom 48:10–15. https://doi.org/10.1016/j.ergon.2015.03.003

    Article  Google Scholar 

  4. Hansraj KK (2014) Assessment of stresses in the cervical spine caused by posture and position of the head. Surg Technol Int 25:277–279

    PubMed  Google Scholar 

  5. Stephenson ML, Ostrander AG, Norasi H, Dorneich MC (2020) Shoulder muscular fatigue from static posture concurrently reduces cognitive attentional resources. Hum Factors 62(4):589–602. https://doi.org/10.1177/0018720819852509

    Article  PubMed  Google Scholar 

  6. Kim S, Koo S (2016) Effect of duration of smartphone use on muscle fatigue and pain caused by forward head posture in adults. J Phys Ther Sci 28(6):1669–1672. https://doi.org/10.1589/jpts.28.1669

    Article  PubMed  PubMed Central  Google Scholar 

  7. Kocur P, Lochynski D (2020) Female office workers with moderate neck pain have increased anterior positioning of the cervical spine and stiffness of upper trapezius myofascial tissue in sitting posture: response to letter to editor. PM R 12(10):1061. https://doi.org/10.1002/pmrj.12358

    Article  PubMed  Google Scholar 

  8. Yu M, Silvestre C, Mouton T et al (2013) Analysis of the cervical spine sagittal alignment in young idiopathic scoliosis: a morphological classification of 120 cases. Eur Spine J 22(11):2372–2381. https://doi.org/10.1007/s00586-013-2753-1

    Article  PubMed  PubMed Central  Google Scholar 

  9. Dolan KJ, Green A (2006) Lumbar spine reposition sense: the effect of a ‘slouched’ posture. Manual Ther 11(3):202–207. https://doi.org/10.1016/j.math.2006.03.003

    Article  Google Scholar 

  10. Gaffney BM, Maluf KS, Curran-Everett D, Davidson BS (2014) Associations between cervical and scapular posture and the spatial distribution of trapezius muscle activity. J Electromyogr Kines 24(4):542–549. https://doi.org/10.1016/j.jelekin.2014.04.008

    Article  Google Scholar 

  11. Eitivipart AC, Viriyarojanakul S, Redhead L (2019) Musculoskeletal disorder and pain associated with smartphone use: a systematic review of biomechanical evidence. Hong Kong Physiother J 38(02):77–90. https://doi.org/10.1142/S1013702518300010

    Article  Google Scholar 

  12. Alsalameh A, Harisi M, Alduayji M, Almutham A, Mahmood F (2019) Evaluating the relationship between smartphone addiction/overuse and musculoskeletal pain among medical students at Qassim University. J Fam Med Prim Care 8(9):2953. https://doi.org/10.4103/jfmpc.jfmpc_665_19

    Article  Google Scholar 

  13. Zhang J, Yu J, Liu C, Tang C, Zhang Z (2019) Modulation in elastic properties of upper trapezius with varying neck angle. Appl Bionics Biomech 2019:1–8. https://doi.org/10.1155/2019/6048562

    Article  Google Scholar 

  14. Namwongsa S, Puntumetakul R, Neubert MS, Boucaut R (2019) Effect of neck flexion angles on neck muscle activity among smartphone users with and without neck pain. Ergonomics 62(12):1524–1533. https://doi.org/10.1080/00140139.2019.1661525

    Article  PubMed  Google Scholar 

  15. Betsch M, Kalbhen K, Michalik R et al (2021) The influence of smartphone use on spinal posture – a laboratory study. Gait Posture 85:298–303. https://doi.org/10.1016/j.gaitpost.2021.02.018

    Article  PubMed  Google Scholar 

  16. Malmström E, Olsson J, Baldetorp J, Fransson P (2015) A slouched body posture decreases arm mobility and changes muscle recruitment in the neck and shoulder region. Eur J Appl Physiol 115(12):2491–2503. https://doi.org/10.1007/s00421-015-3257-y

    Article  PubMed  Google Scholar 

  17. Kisilewicz A, Janusiak M, Szafraniec R et al (2018) Changes in muscle stiffness of the trapezius muscle after application of ischemic compression into myofascial trigger points in professional basketball players. J Hum Kinet 64(1):35–45. https://doi.org/10.2478/hukin-2018-0043

    Article  PubMed  PubMed Central  Google Scholar 

  18. Jang H, Hughes LC, Oh D, Kim S (2019) Effects of corrective exercise for thoracic hyperkyphosis on posture, balance, and well-being in older women: a double-blind, group-matched design. J Geriatr Phys Ther 42(3):E17–E27. https://doi.org/10.1519/JPT.0000000000000146

    Article  PubMed  Google Scholar 

  19. Faramarzi KSY, Ghani ZHN (2020) Validity and reliability of smartphone-based Goniometer-Pro app for measuring the thoracic kyphosis. Musculoskelet Sci Pract 49:102216. https://doi.org/10.1016/j.msksp.2020.102216

    Article  Google Scholar 

  20. Pourahmadi MR, Bagheri R, Taghipour M et al (2018) A new iPhone application for measuring active craniocervical range of motion in patients with non-specific neck pain: a reliability and validity study. Spine J 18(3):447–457. https://doi.org/10.1016/j.spinee.2017.08.229

    Article  PubMed  Google Scholar 

  21. Choi J, Jung M, Yoo K (2016) An analysis of the activity and muscle fatigue of the muscles around the neck under the three most frequent postures while using a smartphone. J Phys Ther Sci 28(5):1660–1664. https://doi.org/10.1589/jpts.28.1660

    Article  PubMed  PubMed Central  Google Scholar 

  22. Kozinc Ž, Šarabon N (2020) Shear-wave elastography for assessment of trapezius muscle stiffness: Reliability and association with low-level muscle activity. PLoS ONE 15(6):e0234359. https://doi.org/10.1371/journal.pone.0234359

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Lee ST, Moon J, Lee SH et al (2016) Changes in activation of serratus anterior, trapezius and Latissimus dorsi with slouched posture. Ann Rehabil Med 40(2):318. https://doi.org/10.5535/arm.2016.40.2.318

    Article  PubMed  PubMed Central  Google Scholar 

  24. Schleip R, Naylor IL, Ursu D et al (2006) Passive muscle stiffness may be influenced by active contractility of intramuscular connective tissue. Med Hypotheses 66(1):66–71. https://doi.org/10.1016/j.mehy.2005.08.025

    Article  PubMed  Google Scholar 

  25. Villanueva MBG, Jonai H, Sotoyama M et al (1997) Sitting posture and neck and shoulder muscle activities at different screen height settings of the visual display terminal. Ind Health 35(3):330–336. https://doi.org/10.2486/indhealth.35.330

    Article  CAS  PubMed  Google Scholar 

  26. Sawada T, Okawara H, Nakashima D et al (2020) Reliability of trapezius muscle hardness measurement: a comparison between portable muscle hardness meter and ultrasound strain elastography. Sensors-Basel 20(24):7200. https://doi.org/10.3390/s20247200

    Article  PubMed Central  Google Scholar 

  27. Lee S, Choi Y, Kim J (2017) Effects of the cervical flexion angle during smartphone use on muscle fatigue and pain in the cervical erector spinae and upper trapezius in normal adults in their 20s. J Phys Ther Sci 29(5):921–923. https://doi.org/10.1589/jpts.29.921

    Article  PubMed  PubMed Central  Google Scholar 

  28. Tomita Y, Suzuki Y, Tanaka Y et al (2021) Effects of sitting posture and jaw clenching on neck and trunk muscle activities during typing. J Oral Rehabil 48(5):568–574. https://doi.org/10.1111/joor.13152

    Article  PubMed  Google Scholar 

  29. Caneiro JP, O’Sullivan P, Burnett A et al (2010) The influence of different sitting postures on head/neck posture and muscle activity. Manual Ther 15(1):54–60. https://doi.org/10.1016/j.math.2009.06.002

    Article  Google Scholar 

  30. Imagama S, Hasegawa Y, Wakao N et al (2014) Impact of spinal alignment and back muscle strength on shoulder range of motion in middle-aged and elderly people in a prospective cohort study. Eur Spine J 23(7):1414–1419. https://doi.org/10.1007/s00586-014-3251-9

    Article  PubMed  Google Scholar 

  31. Yoon W, Choi S, Han H, Shin G (2021) Neck muscular load when using a smartphone while sitting, standing, and walking. Hum Factors 63(5):868–879. https://doi.org/10.1177/0018720820904237

    Article  PubMed  Google Scholar 

  32. Escamilla RF, Yamashiro K, Paulos L, Andrews JR (2009) Shoulder muscle activity and function in common shoulder rehabilitation exercises. Sports Med 39(8):663–685. https://doi.org/10.2165/00007256-200939080-00004

    Article  PubMed  Google Scholar 

  33. Yan B, Lu X, Qiu Q, Nie G, Huang Y (2020) Predicting adolescent idiopathic scoliosis among Chinese children and adolescents. Biomed Res Int 2020:1–9. https://doi.org/10.1155/2020/1784360

    Article  Google Scholar 

  34. Kleine BU, Schumann NP, Bradl I, Grieshaber R, Scholle HC (1999) Surface EMG of shoulder and back muscles and posture analysis in secretaries typing at visual display units. Int Arch Occ Env Hea 72(6):387–394. https://doi.org/10.1007/s004200050390

    Article  CAS  Google Scholar 

  35. Seghers J, Jochem A, Spaepen A (2010) Posture, muscle activity and muscle fatigue in prolonged VDT work at different screen height settings. Ergonomics 46(7):714–730. https://doi.org/10.1080/0014013031000090107

    Article  Google Scholar 

  36. Farina D, Kallenberg LAC, Merletti R, Hermens HJ (2003) Effect of side dominance on myoelectric manifestations of muscle fatigue in the human upper trapezius muscle. Eur J Appl Physiol 90(5–6):480–488. https://doi.org/10.1007/s00421-003-0905-4

    Article  PubMed  Google Scholar 

  37. Elert JE, Rantapää-dahlqvist SB, Henriksson-larsén K, Lorentzon R, Gerdlé BUC (2009) Muscle performance, electromyography and fibre type composition in fibromyalgia and work-related myalgia. Scand J Rheumatol 21(1):28–34. https://doi.org/10.3109/03009749209095059

    Article  Google Scholar 

  38. Kadi F, Ahlgren C, Waling K, Sundelin G, Thornell LE (2000) The effects of different training programs on the trapezius muscle of women with work-related neck and shoulder myalgia. Acta Neuropathol 100(3):253–258. https://doi.org/10.1007/s004019900174

    Article  CAS  PubMed  Google Scholar 

  39. Mannion AF, Meier M, Grob D, Müntener M (1998) Paraspinal muscle fibre type alterations associated with scoliosis: an old problem revisited with new evidence. Eur Spine J 7(4):289–293. https://doi.org/10.1007/s005860050077

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Liu Y, Pan A, Hai Y et al (2019) Asymmetric biomechanical characteristics of the paravertebral muscle in adolescent idiopathic scoliosis. Clin Biomech 65:81–86. https://doi.org/10.1016/j.clinbiomech.2019.03.013

    Article  Google Scholar 

  41. Horne JP, Flannery R, Usman S (2014) Adolescent idiopathic scoliosis: diagnosis and management. Am Fam Physician 89(3):193–198

    PubMed  Google Scholar 

Download references

Acknowledgements

The authors thank Prof. Chunlong Liu and Prof. Zheng Zhang for technical support and review of this manuscript. We also thank Qiming Zhang for his help in providing suggestions for this paper. We are grateful to the students of the Guangzhou University of Chinese Medicine for participating in the study as subjects.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Zheng Zhang or Chunlong Liu.

Ethics declarations

Conflict of interest

The authors declare no competing interests.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Liang, H., Yu, S., Hao, M. et al. Effects of cervicothoracic postures on the stiffness of trapezius muscles. Med Biol Eng Comput 60, 3009–3017 (2022). https://doi.org/10.1007/s11517-022-02655-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11517-022-02655-4

Keywords

Navigation