Skip to main content

Advertisement

Log in

Pulmonary nodule detection based on IR-UNet +  + 

  • Original Article
  • Published:
Medical & Biological Engineering & Computing Aims and scope Submit manuscript

Abstract

Lung cancer is one of the cancers with the highest incidence rate and death rate worldwide. An initial lesion of the lung appears as nodules in the lungs on CT images, and early and timely diagnosis can greatly improve the survival rate. Automatic detection of lung nodules can greatly improve work efficiency and accuracy rate. However, owing to the three-dimensional complex structure of lung CT data and the variation in shapes and appearances of lung nodules, high-precision detection of pulmonary nodules remains challenging. To address the problem, a new 3D framework IR-UNet +  + is proposed for automatic pulmonary nodule detection in this paper. First, the Inception Net and ResNet are combined as the building blocks. Second, the squeeze-and-excitation structure is introduced into building blocks for better feature extraction. Finally, two short skip pathways are redesigned based on the U-shaped network. To verify the effectiveness of our algorithm, systematic experiments are conducted on the LUNA16 dataset. Experimental results show that the proposed network performs better than several existing lung nodule detection methods with the sensitivity of 1 FP/scan, 4 FPs/scan, and 8 FPs/scan being 90.13%, 94.77%, and 95.78%, respectively. Therefore, it comes to the conclusion that our proposed model has achieved superior performance for lung nodule detection.

Graphical Abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Ferlay J, Soerjomataram I, Dikshit R, Eser S, Mathers C et al (2015) Cancer incidence and mortality worldwide: sources, methods and major patterns in GLOBOCAN 2012. Int J Cancer 136(5):359–386. https://doi.org/10.1002/ijc.29210

    Article  CAS  Google Scholar 

  2. Scott A, Jose L, Johanna B, Patrick A, Matthew T et al (2016) Nivolumab alone and nivolumab plus ipilimumab in recurrent small-cell lung cancer (CheckMate 032): a multicentre, open-label, phase 1/2 trial. Lancet Oncol 17(7):883–895. https://doi.org/10.1016/S1470-2045(16)30098-5

    Article  CAS  Google Scholar 

  3. Marten K, Grillhösl A, Seyfarth T, Obenaueret S, Rummeny E et al (2005) Computer-assisted detection of pulmonary nodules: evaluation of diagnostic performance using an expert knowledge-based detection system with variable reconstruction slice thickness settings. Eur Radiol 15(2):203–212. https://doi.org/10.1007/s00330-004-2544-5

    Article  Google Scholar 

  4. Mei J, Cheng M, Xu G, Wan L, Zhang H (2021) SANet: a slice-aware network for pulmonary nodule detection. IEEE Trans Pattern Anal Mach Intell Online. https://doi.org/10.1109/TPAMI.2021.3065086

    Article  Google Scholar 

  5. Firmino M, Morais A, Mendoca R, Dantas M, Hekis H et al (2014) Computer-aided detection system for lung cancer in computed tomography scans: review and future prospects. Biomed Eng Online 13:41. https://doi.org/10.1186/1475-925X-13-41

    Article  Google Scholar 

  6. Salakhutdinov R, Hinton G (2012) An efficient learning procedure for deep Boltzmann machines. Neural Comput 24(8):1967–2006. https://doi.org/10.1162/NECO_a_00311

    Article  Google Scholar 

  7. Chartrand G, Cheng P, Vorontsov E, Drozdzal M, Turcotte S et al (2017) Deep learning: a primer for radiologists. Radiographics 37(7):2113–2131. https://doi.org/10.1148/rg.2017170077

    Article  Google Scholar 

  8. Naqi S, Sharif M, Yasmin M (2017) Multistage segmentation model and SVM-ensemble for precise lung nodule detection. Int J Comput Assist Radiol Surg 13(7):1083–1095. https://doi.org/10.1007/s11548-018-1715-9

    Article  Google Scholar 

  9. Messay T, Hardie R, Rogers S (2010) A new computationally efficient CAD system for pulmonary nodule detection in CT imagery. Med Image Anal 14(3):390–406. https://doi.org/10.1016/j.media.2010.02.004

    Article  Google Scholar 

  10. Jacobs C, Rikxoort E, Twellmann T, Scholten E, Jong O et al (2014) Automatic detection of subsolid pulmonary nodules in thoracic computed tomography images. Med Image Anal 18(2):374–384. https://doi.org/10.1016/j.media.2013.12.001

    Article  Google Scholar 

  11. Duggan N, Bae E, Shen S, Hsu W, Bui A et al (2015) A technique for lung nodule candidate detection in CT using global minimization methods. Int Workshop Energy Minimization Methods Comput Vision Pattern Recognition 8932:478–491. https://doi.org/10.1007/978-3-319-14612-6_35

    Article  Google Scholar 

  12. Torres E, Fiorina E, Pennazio F, Peroni C, Saletta M et al (2015) Large scale validation of the M5L lung CAD on heterogeneous CT datasets. Med Phys 42(4):1477–1489. https://doi.org/10.1118/1.4907970

    Article  Google Scholar 

  13. Awai K, Murao K, Ozawa A, Komi M, Hayakawa H, Hori S et al (2004) Pulmonary nodules at chest CT: effect of computer-aided diagnosis on radiologists’ detection performance. Radiology 230(2):347–352. https://doi.org/10.1148/radiol.2302030049

    Article  Google Scholar 

  14. Setio A, Ciompi F, Litjens G, Gerke P, Jacobs C et al (2016) Pulmonary nodule detection in CT images: false positive reduction using multi-view convolutional networks. IEEE Trans Med Imaging 35(5):1160–1169. https://doi.org/10.1109/TMI.2016.2536809

    Article  Google Scholar 

  15. Ren S, He K, Girshick R, Sun J (2017) Faster R-CNN: towards real-time object detection with region proposal networks. IEEE Trans Pattern Anal Mach Intell 39(6):1137–1149. https://doi.org/10.1109/TPAMI.2016.2577031

    Article  Google Scholar 

  16. Liu W, Dragomir A, Dumitru E, Christian S, Scott R et al (2016) SSD: single shot multibox detector. European Conference Computer Vision 9905:21–37. https://doi.org/10.1007/978-3-319-46448-0_2

  17. Redmon J, Divvala S, Girshick R, Farhadi A (2016) You only look once: unified, real-time object detection. IEEE Computer Vision & Pattern Recognition 779–788. https://doi.org/10.48550/arXiv.1506.02640

  18. Ding J, Li A, Hu Z, Wang L (2017) Accurate pulmonary nodule detection in computed tomography images using deep convolutional neural networks. International Conference on Medical Image Computing and Computer-Assisted Intervention 559–567. https://doi.org/10.1007/978-3-319-66179-7_64

  19. Yan X, Pang J, Qi H, Zhu Y, Bai C et al (2016) Classification of lung nodule malignancy risk on computed tomography images using convolutional neural network: a comparison between 2D and 3D strategies. Asian Conference Computer Vision 91–101. https://doi.org/10.1007/978-3-319-54526-4_7

  20. Setio A, Traverso A, Bei T, Berens M, Bogaard C, Cerello P et al (2016) Validation, comparison, and combination of algorithms for automatic detection of pulmonary nodules in computed tomography images: the LUNA16 challenge. Med Image Anal 42:1–13. https://doi.org/10.1016/j.media.2017.06.015

    Article  Google Scholar 

  21. Liao F, Liang M, Li Z, Hu X, Song S (2019) Evaluate the malignancy of pulmonary nodules using the 3D deep leaky noisy-or network. IEEE Transactions on Neural Networks Learning Systems 30(11):3484–3495. https://doi.org/10.1109/TNNLS.2019.2892409

  22. Zhu W, Liu C, Fan W, Xie X (2018) Deeplung: deep 3D dual path nets for automated pulmonary nodule detection and classification. IEEE Winter Conference on Applications of Computer Vision 673–681. https://doi.org/10.1101/189928

  23. Golan R, Jacob C, Denzinger J (2016) Lung nodule detection in CT images using deep convolutional neural networks. International Joint Conference on Neural Networks 243–250. https://doi.org/10.1109/IJCNN.2016.7727205

  24. Hamidian S, Sahiner B, Petrick N, Pezeshk A (2017) 3D convolutional neural network for automatic detection of lung nodules in chest CT. Proc SPIE-Int Soc Opt Eng 10134:1013409. https://doi.org/10.1117/12.2255795

  25. Li Y, Yong F (2020) DeepSEED: 3D squeeze-and-excitation encoder-decoder convolutional neural networks for pulmonary nodule detection. IEEE International Symposium on Biomedical Imaging 1866–1869. https://doi.org/10.48550/arXiv.1904.03501

  26. Zhu W, Vang Y, Huang Y, Xie X (2018) DeepEM: deep 3D convnets with EM for weakly supervised pulmonary nodule detection. Proceedings International Conference Medical Image Computing and Computer-Assisted Intervention 812–820. https://doi.org/10.1007/978-3-030-00934-2_90

  27. Harsono L, Liawatimena S, Cenggoro T (2020) Lung nodule detection and classification from thorax CT-scan using RetinaNet with transfer learning. Journal of King Saud University - Computer and Information Sciences 34(3):567–577. https://doi.org/10.1016/j.jksuci.2020.03.013

  28. Tang H, Zhang C, Xie X (2019) NoduleNet: decoupled false positive reduction for pulmonary nodule detection and segmentation. International Conference Medical Image Computing and Computer-Assisted Intervention 266–274. https://doi.org/10.1007/978-3-030-32226-7_30

  29. Jonathan H, Vivek R, Sun C, Zhu M, Anoop K et al (2017) Speed/accuracy trade-offs for modern convolutional object detectors. IEEE Conf Comput Vis Pattern Recognit (CVPR) 3296–3297. https://doi.org/10.1109/CVPR.2017.351

  30. Zhou Z, Siddiquee M, Tajbakhsh N, Liang J (2018) Unet++: a nested u-net architecture for medical image segmentation. International Workshop on Deep Learning in Medical Image Analysis 3–11. https://doi.org/10.48550/arXiv.1807.10165

  31. Jie H, Li S, Albanie S, Gang S, Wu E (2017) Squeeze-and-excitation networks. IEEE Trans Pattern Anal Mach Intell 42(8):2011–2023. https://doi.org/10.1109/TPAMI.2019.2913372

    Article  Google Scholar 

  32. Armato S, Roberts R, Mcnitt-gray M, Meyer C, Reeves A et al (2007) The lung image database consortium (LIDC) and image database resource initiative (IDRI): a completed reference database of lung nodules on CT scans. Acad Radiol 14(12):1455–1463. https://doi.org/10.1016/j.acra.2007.08.006

    Article  Google Scholar 

  33. Isabel Bush (2016) Lung nodule detection and classification. IEEE International Conference on Image Processing

  34. Bellotti R, De-Carlo F, Tangaro S, Cascio D et al (2007) A CAD system for nodule detection in low-dose lung CTs based on region growing and a new active contour model. Med Phys 34(12):4901–4910. https://doi.org/10.1118/1.2804720

    Article  CAS  Google Scholar 

  35. Gori I, Giger M, Karssemeijer FM et al (2007) An automated system for lung nodule detection in low-dose computed tomography. Med Imaging 6514. https://doi.org/10.1117/12.709642

Download references

Funding

This work was supported by the Zhejiang Provincial Natural Science Foundation of China (No. LZ22F010003), the National Natural Science Foundation of China (No. 61871427), and the National Key R&D Program of China (2021ZD0113204).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Qingshan She or Yun Chen.

Ethics declarations

Conflict of interest

The authors declare no competing interests.

Additional information

Publisher's note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lin, J., She, Q. & Chen, Y. Pulmonary nodule detection based on IR-UNet +  + . Med Biol Eng Comput 61, 485–495 (2023). https://doi.org/10.1007/s11517-022-02727-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11517-022-02727-5

Keywords

Navigation