
/ Published online: 31 January 2023

Medical & Biological Engineering & Computing (2023) 61:1395–1408 
https://doi.org/10.1007/s11517-022-02746-2

ORIGINAL ARTICLE

PneuNet: deep learning for COVID-19 pneumonia diagnosis
on chest X-ray image analysis using Vision Transformer

TianmuWang1,2,3 · Zhenguo Nie1,2,3 · Ruijing Wang4 ·Qingfeng Xu1,5 ·Hongshi Huang6 ·Handing Xu1,2,3 ·
Fugui Xie1,2,3 · Xin-Jun Liu1,2,3

Received: 23 June 2022 / Accepted: 22 December 2022
© International Federation for Medical and Biological Engineering 2023

Abstract
A long-standing challenge in pneumonia diagnosis is recognizing the pathological lung texture, especially the ground-
glass appearance pathological texture. One main difficulty lies in precisely extracting and recognizing the pathological
features. The patients, especially those with mild symptoms, show very little difference in lung texture, neither conventional
computer vision methods nor convolutional neural networks perform well on pneumonia diagnosis based on chest X-ray
(CXR) images. In the meanwhile, the Coronavirus Disease 2019 (COVID-19) pandemic continues wreaking havoc around
the world, where quick and accurate diagnosis backed by CXR images is in high demand. Rather than simply recognizing
the patterns, extracting feature maps from the original CXR image is what we need in the classification process. Thus, we
propose a Vision Transformer (VIT)–based model called PneuNet to make an accurate diagnosis backed by channel-based
attention through X-ray images of the lung, where multi-head attention is applied on channel patches rather than feature
patches. The techniques presented in this paper are oriented toward the medical application of deep neural networks and
VIT. Extensive experiment results show that our method can reach 94.96% accuracy in the three-categories classification
problem on the test set, which outperforms previous deep learning models.
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1 Introduction

According to the World Health Organization (WHO),
pneumonia accounts for 14% of all deaths of children under
5 years old and is blamed as one main murderer of children
[1]. Pneumonia can be divided into two categories which
are bacterial pneumonia and viral pneumonia. In the past
decades, the viral pneumonia, SARS, for example, has not
only murdered children but also claimed the lives of people
of all ages, especially those who are suffering from chronic
disease [2]. In 2019, a novel coronavirus called COVID-
19 was first reported in Wuhan, China, in December 2019.
The plague has continued to have a devastating effect on
global health and has caused over 6 million death cases all
over the world, out of over 611 million infected people,
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according to Johns Hopkins University [3]. Patients infected
by COVID-19 share similar symptoms as usual pneumonia.
The ignorance of such similar symptoms leads to the rapid
spreading of this lethal virus and has become one of the
leading causes of this global pandemic.

During the global pandemic caused by COVID-19,
isolation has been proven to be the most effective method
to control the spreading once an accurate diagnosis is
conducted. RT-PCR test and antibody test have become two
wildly used solutions to make a quick diagnosis. However,
the sensitivity of RT-PCR is still under debate. It is reported
that there is a 3% false-negative rate exists in the RT-
PCR test [4]. In the meanwhile, the result of the antibody
test cannot be convincing if the suspected patient gets
infected in the first 7 days. An alternative choice to make
the diagnosis is based on the evaluation of radiographic
images of the lung, such as chest X-ray (CXR) images and
computerized tomography (CT) images. Previous research
has concluded that pulmonary manifestation of COVID-
19 infection is predominantly characterized by ground-
glass opacification with occasional consolidation [5, 6].
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Researchers are confident that preliminary screening can be
applied to suspected cases based on the evaluation of CXR
images [7].

Preliminary screening based on CXR images has the
advantage over other screening methods not only from
the perspective of precision but also from its availability
and efficiency. CXR imaging has been counted as part of
the primary health care system and is readily available in
community clinics. A large batch of CXR images can be
evaluated at the same time with the help of computer vision
methods and artificial neural networks [8].

An accurate classification can be conducted by convo-
lutional neural networks (CNN) with the help of spatial
feature extraction and pattern recognition. However, con-
ventional CNN and CV methods do not care about the
number of spatial features responsible for classification. In
this paper, we propose a multi-head attention-based network
called PneuNet, inspired by Vision Transformer (VIT), to
conduct a diagnosis of COVID-19. We treat each chan-
nel after convolution calculation as one patch, and then the
transformer module is applied to evaluate the contribution
of each patched channel in classification. Unlike paying
attention to the primary feature block of images, we pay
more attention to the global extracted spatial features, which
could be more efficient in the classification process. Mean-
while, attention applied to convoluted channels has practical
implications, where each channel theoretically represents
a particular feature from the raw image on the scale of
a higher dimension. An extensive experiment shows the
proposed model can reach 94.96% test accuracy in three
category classifications, where none pneumonia, normal
pneumonia, and COVID-19 are classified. Our model also
reaches 99.30% accuracy when applied to binary classifica-
tion, which is used to detect if pneumonia is caused by a
coronavirus.

The full implementation and trained network are pub-
lished on https://github.com/TianmuWang/PneuNet. Our
main contributions are as follows:

1. We propose a novel deep learning method, which jointly
employs ResNet18 and multi-head attention to make the
diagnosis of COVID-19 based on CXR images.

2. We treat the extracted features as patches, and apply
channel-based attention to implement the transformer
encoder after the application of ResNet18.

3. We evaluate the model not only from the perspective
of prediction accuracy but also backed by statistical
criteria. In this paper, the prediction based on up to
four-category classification is evaluated, corresponding
to diagnosing COVID-19 from COVID-19, none
pneumonia, bacterial pneumonia, and viral pneumonia.

2 Related work

Inspired by the rapid development of image recognition
and classification backed by artificial intelligence, many
intelligent pneumonia diagnosis methods have been pro-
posed [9], which are based on making classification among
radiography images backed by deep learning methods. The
prediction results of the above models are proven to be con-
vincing from the aspect of prediction accuracy. Our review
highlights popular deep learning models on image classifi-
cation and their applications in pneumonia diagnosis from
radiography images.

The deep learning method is of a broader family of
machine learning methods based on artificial neural net-
works with representation learning, inspired by the human
brain’s structure and function [10, 11]. Convolutional neural
network (CNN) is one of the most effective deep learn-
ing methods dealing with image classification resulting
from extracting spatial features through convolution calcu-
lation [12]. With the help of deeper network layers and its
more complicated structure, CNN outperforms conventional
computer vision methods such as Generalized Search Tree
(GIST) [13] and Histogram of Oriented Gradient (HOG)
[14]. The art of deep learning methods is the generalization
capability brought from deeper hidden layers [15] and the
gradient descent methods through backpropagation. He et
al. [16] propose ResNet, where residual blocks are used to
prevent potential gradient vanishing and gradient exploding
during the training of a deep CNN model. Due to the out-
standing capacity of extracting spatial features, the ResNet
family is commonly used in the field of pattern recognition.

Motivated by CNN and ResNet models, much research
on pneumonia diagnosis focuses on radiography image
classification based on CNN models [17–22]. A lightweight
CNN-based model proposed by Bhosale et al. reaches high
prediction accuracy under RaspberryPi [23]. Zhang et al.
[24] apply ResNet18 to COVID-19 diagnosis and reach a
95.18% accuracy on binary classification. Hemdan et al.
[25] make a fine tune on ResNet50 and rename it COVIDX-
Net. Narin et al. [26] compare ResNet18, InceptionV3 [27],
and Inception-ResNetV2 szegedy2017inception based on a
small-scale pneumonia datasets. Wang et al. [28] propose
a deep CNN-based model called COVID-Net, where CNN
layers from different depths are tailored and obtain 83.5%
accuracy in classifying COVID-19, normal, pneumonia-
bacterial, and pneumonia-viral classes. Apostolopoulos and
Mpesiana [29] apply transfer learning based on pre-trained
VGG19 models and obtain the best accuracy of 98.75% and
93.48% for two and three classes, respectively. Ozturk et
al. [30] propose DarkCovidNet based on CNN layers with
LeakyReLU as an activation function and obtain 98.08%
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Fig. 1 Architecture of PneuNet
(a) and the details of
Transformer Encoder (b)

and 87.02% accuracy for binary classification and three-
category classification, respectively. CoroNet proposed by
Khan et al. [31] evolves the model from the Xception
structure and reaches a 92% accuracy on multi-category
classification for pneumonia diagnosis. Shazia et al. [32]
analyze VGG, ResNet, DenseNet101, and Inception model
and compare their performance in diagnosing COVID-
19, where DenseNet101 and ResNet51 reveal the latent
transfer ability to make an accurate prediction of COVID-
19 diagnosis. Considering that we want to find a lightweight
model available in suburban and undeveloped areas, we
need to compress the scale of the model. Therefore,
we consider employing ResNet18, a lightweight standard
ResNet model, to first extract useful spatial features from
raw images.

Recurrent neural networks (RNN) is another wildly used
deep learning method [33]. Unlike CNN models, RNN
models consider the context within the message and are
initially developed to solve natural language processing
(NLP) questions such as voice recognition and translation.
However, RNN has been developed and is ready to work
on pattern recognition and object detection in computer
vision. Long short-term memory (LSTM) is one typical
application of RNN networks to detect the object in an

image and shows great potential in medical diagnosing [34–
36]. Mousavi et al. [37] combine CNN and LSTM and make
an analysis based on seven binary categorical classifications
among COVID-19, viral pneumonia, bacterial pneumonia,
and healthy people.

However, both CNN and LSTM are limited in recog-
nizing a pattern on a dynamic and large scale. The size of
the kernel blocks the receptive field of CNN, and LSTM
can only realize the context in a narrow range. Apart from
CNN and LSTM, transformer [38] has become a hot topic
in computer vision, where attention modular is employed to
analyze the hot spot region of each image and then make
a classification based on it. Compared with LSTM, Trans-
former is much more accessible in parallel computation
and is powerful in global context reconstruction. The trans-
former is firstly applied in an NLP problem where several
powerful general-purpose models are introduced, such as
BERT [39] and GPT-2 [40], where multi-head attention is
proposed that allows the model to jointly attend to infor-
mation from different representation subspaces at different
positions. Whereas the transformer is initially proposed to
solve NLP problems, and it has been transferred to solve
computer vision problems. Although the transformer struc-
ture is suitable for image recognition and classification of
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objects, the CNN module still plays an important role in
classification [41]. Dosovitskiy et al. [42] bring up the con-
ception of Vision in Transformer (VIT), where multi-head
attention can be applied to small patches, which are divided
from original images. Inspired by the combination of CNN
models and transformer structure, lots of research have been
carried out. Sitaula et al. [43] propose an attention-based
VGG-16 model and get 79.58% accuracy on multi-class
pneumonia diagnosis. Zhang et al. combine the swin trans-
former block with U-Net together and got a maximum F-1
score of 0.935 based on training on 1560 CT scans. How-
ever, precise prediction accuracy is not mentioned. Park
et al. [44] introduce a probabilistic-CAM (PCAM) pool-
ing backbone network before applying the transformer and
obtain an AUC score of 0.941 for three-category classi-
fication based on CXR images. The transformer can be
jointly used with basic CNN models, outperforms sim-
ple CNN-based models, and follows an interesting internal
logic similar to human cognition during the training pro-
cess. Consequently, we combine transformer and ResNet in
our proposed PneuNet model to help diagnose COVID-19
based on CXR images.

3 Technical approach

Our proposed PneuNet is backed by ResNet18 and VIT
models. As the previous study does, ResNet18 works as the
backbone of the whole model, extracting spatial features
with the help of deep convolutional layers. However, unlike
other VIT models, we keep the extracted features from
splitting them into patches but take the whole channel,
downsized from deep convolution calculation and max
pooling, as one individual patch. After being encoded and
embedded, patches will pass multi-head attention layers
before the final classification process with the help of three
fully connected layers, which can also be called multi-layer
perceptron (MLP). Figure 1 illustrates the overall structure
of our proposed model. The detailed architecture of our
proposed model is presented in Table 1.

3.1 Application of ResNet18

ResNet18 is first proposed by He et al. [16] and has been
proven to have excellent performance on spatial feature
extraction, which is a series of deep neural networks that are
derived from the base repeated building blocks. ResNet18
contains four kinds of Residual Blocks, and each Residual
block is repeated twice, as shown in Fig. 2. The entire
architecture is shown in Table 2. Compared with other
deep convolutional networks such as VGG16, ResNet18
can prevent the gradient vanishing and exploding during

Table 1 Detailed architecture of PneuNet

Layer (submodel) Output
shape

Number of
parameter

Input Layer 22 × 224 × 1 0

ResNet18 7 × 7 × 512 11184640

Batch Normalization 7 × 7 × 512 2048

Embedding&Encoder 512 × 80 44960

Transformer 1 512 × 80 439680

Transformer 2 512 × 80 439680

Transformer 3 512 × 80 439680

Transformer 4 512 × 80 439680

Transformer 5 512 × 80 439680

Transformer 6 512 × 80 439680

Layer normalization 512 × 80 160

Flatten 40960 0

Dropout 40960 0

Dense 1024 41944064

Dropout 1024 0

Dense 64 65600

Dropout 64 0

Dense 16 1040

Dropout 16 0

LogitDense 3 51

the backpropagation process. In the meanwhile, ResNet18
requires much less computational capacity compared with
ResNet51 and ResNet101 and can be easily trained on a
local PC. ResNet18 can extract 512 channels of different
spatial features which will be thought of as patches. At
the end of ResNet18, an additional max-pooling layer is
used to downsample the extracted spatial features better.
Considering the input of neural networks is a batch of
gray-scale images, of which the shape can be defined as

Input ∈ Rh×w×1 (1)

where h denotes the height of the input image and w denotes
the width. The output of this submodule can be described as

OutputResNet18 ∈ R28×28×512 (2)

3.2 Application of transformer

In conventional VIT models, patches are generated from
raw images, where images are divided into pieces in each
channel, as shown in Fig. 3. However, in our proposed
PneuNet, we think of each channel of extracted spatial
features entirely as one patch, shown in Fig. 4. Convolution
is an efficient way to extract spatial features from multiple
dimensions but lacks the capacity to tell how important
the feature stands for during the classification process.
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Fig. 2 Architecture of
ResNet18, without flatten layer
nor logit layer

However, the transformer can evaluate how much one
feature patch contributes to classifying with the help of
multi-head attention. The number of heads represents the
number of subspace that allows the model to focus jointly
on information from different positions. In our proposed
PneuNet, we employ four transformer layers with four-head
attention. Each two-dimensional patch is embedded into a
one-dimensional vector with a length of 80.

The intermediate output of transformer modular can be
described as

Outputinter = Ti(head, OutputResNet18) ∈ R512×p (3)

Table 2 Detailed architecture of ResNet18

Layer (submodel) Output shape

Conv2D 112 × 112 × 64

Max Pooling 56 × 56 × 64

Building Block 1 56 × 56 × 64

Building Block 2 28 × 28 × 64

Building Block 3 14 × 14 × 64

Building Block 4 7 × 7 × 64

Total parameters 11184640

where head denotes the number of heads applied in
attention modular, p denotes the number of projection
dimensions, and Outputinter denotes the intermediate
output of transformer modular before an extra flatten
layer to map higher-dimensional features into a one-
dimensional vector, counted as Outputtransf ormer , which
can be indicated as

OutputT ransf ormer = Ttr (Outputinter ) ∈ RN (4)

N = 512 × p (5)

where N denotes the dimension of the flattened vector.
In PneuNet, multiple Transformers are employed in model
architecture. The least repeating unit of the Transformer
submodel is shown in Table 3.

3.3 Application of multi-layer perceptron

Multi-layer perceptron consists of several fully connected
layers, which are also called Dense layers. Particularly in
our PneuNet. MLP section consists of three Dense layers,
where ReLU is used as the activation function and a 20%
dropout is applied after each Dense layer.
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Fig. 3 Image partition in
conventional VIT process: raw
image (a) is divided into several
patches (b) and each patch will
be encoded and embedded with
its position

3.4 Application of logit classification layer

A particular fully connected layer can be treated as a
logit layer where Softmax acts as an activation function.
Softmax is a wildly used logit function that maps the
multinomial distribution of the probability score to a vector.
The length of the vector equals the number of categories
to be classified. The output of this distribution can be
described as

P(y) = eWy

∑C
y=1 eWy

(6)

where y denotes yth category, C denotes the number of
categories, and Wy denotes the intermediate weight for yth

category calculated from the Dense layer.

4 Experiments setup

4.1 Dataset

In this study, CXR images from seven online public
repositories are assembled as our datasets. COVID-19 CXR
images collected from [45–51], normal pneumonia CXR
images collected from [52–54], and CXR images of healthy
people from [52–54] have been divided into three sub-
datasets out of total 33920 CXR images. We divided our
datasets into three categories which are used for training and
validation during training, and for testing the generalization
performance of the well-trained model. The dataset is
divided in a ratio of 64:16:20. Details of our dataset are
shown in Table 4. However, most online datasets except
[48] do not distinguish bacterial and viral pneumonia out
of normal pneumonia. When we generate another dataset

Fig. 4 Illustration of patches
employed in Transformer
modular which obtained from
ResNet18
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Table 3 Architecture of Transformer submodel

Layer (submodel) Output
shape

Number of
parameter

Layer Normalization 512 × 80 160

Multi-head Attention 512 × 80 413520

Add 512 × 80 0

Layer Normalization 512 × 80 160

Dense 512 × 160 12960

Dropout 512 × 160 0

Dense 512 × 80 12880

Dropout 512 × 80 0

Add 512 × 80 0

with four categories, we employ a down-sampling method
to collect COVID-19 CXR images and healthy CXR images
from the latter datasets to balance this four-categorical
dataset. Details of this dataset are shown in Table 5. Some
typical CXR images from four categories are shown in
Fig. 5. In this study, to realize the intelligent screening
of COVID-19 patients, we focus on the classification of
three categories, which are none pneumonia, COVID-19,
and normal pneumonia. Discussion of the four-category
classification from none pneumonia, COVID-19, bacterial
pneumonia, and viral pneumonia is also mentioned in the
following sections.

4.2 Evaluationmetrics

Cross-entropy (CE) acts as a loss function and plays an
essential role in training a deep neural network during the
backpropagation process. It can be described as

CE = 1

N

∑

i

M∑

c=1

yic log(Pic) (7)

where N denotes dimension, M denotes the number of
categories, and yic is a symbolic function where yic equals 1
if the sample i and the sample c belong to the same category
based on ground truth, otherwise equals 0. And Pic denotes
predicted probability where sample i belongs to category c.

For a better description of the effectiveness of the
proposed PneuNet model, five statistical evaluation criteria
are used to evaluate the performance of the PneuNet model,

Table 4 Details of three-categorical dataset

Image category Training Validation Test Amount

COVID-19 7658 1903 2395 11956

Normal Pneumonia 7208 1802 2253 11263

None Pneumonia 6849 1712 2140 10701

Table 5 Details of four-categorical dataset

Image category Training Validation Test Amount

COVID-19 1245 120 120 1485

Bacterial Pneumonia 1245 120 120 1485

Viral Pneumonia 1225 120 120 1465

None Pneumonia 1245 120 120 1485

which are Prediction Accuracy, Recall rate, Precision, and
F-1 Score. These criteria are defined as follows:

Accuracy = T P + T N

T P + FP + T N + FN
(8)

Recall = T P

T P + FN
(9)

Precision = T P

T P + FP
(10)

F − 1Score = 2 ∗ Precision ∗ Recall

P recision + Recall
(11)

where T P is short for True Positive, T N for Ture
Negative, FP for False Positive, and FN for False
Negative. T P , T N , FP , and FN can be obtained from
the confusion matrix, which is a square matrix containing
the predictionary label and the ground truth. Additionally,
receiver operating characteristic (ROC) curve is another
widely used metric to describe the performance of a
classifier, where the false-positive rate (FPR) and true-
positive rate (TPR) is used as the horizontal and vertical
axis, respectively. In statics, true-positive rate (TPR) is
defined as the probability of a positive response when the
correct answer is positive, and false-positive rate (FPR) is
defined as the probability of a positive response when the
correct answer is negative [55]:

FPR = FP

FP + T N
(12)

T PR = T P

T P + FN
(13)

4.3 Implementation

In all the tested models, AdamW [56] is used for
optimization, which performs better in preventing gradient
vanishing during training compared with jointly using
Adam and L2 regularization. A mini-batch with a size of
16 is used in both the training and test process, where the
maximum training epoch is set as 100. Considering that the
distilled spatial features in each channel act as patches in the
process of transformer encoder, we trained ResNet18 locally
to get optimal parameters of kernels. Data augmentation
is applied before training. The detailed parameters, which
include basic settings for training and data augmentation,
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Fig. 5 Typical chest X-ray
images from the combined
dataset: CXR image of None
Pneumonia (a), CXR images of
COVID-19 (b), CXR images of
Bacterial Pneumonia (c), and
CXR images of Viral
Pneumonia (d)

are listed in Table 6. We initialize the hyperparameters with
recommended values from previous work [16, 38, 42, 56].

5 Results and discussion

All the experiments in this paper were implemented
in Python using Keras with TensorFlow running on an
NVIDIA GeForce RTX 3090 GPU. The training history
of our model is shown in Fig. 6, where cross-entropy

Table 6 Parameters during training and data augmentation

Name of parameter Value

Image size 224 × 224 × 1

Batch size 16

Optimizer AdamW

Learning rate 0.0001

Weight decay 0.00001

Dropout rate 0.2

Loss Categorical cross-entropy

Zoom range 0.1

Rotation range 0.1

Width-shift range 0.1

Height-shift range 0.1

and categorical accuracy are used as a criterion to help
make early stopping in case of overfitting. The model is
trained with 300 epochs. Both validation loss and validation
accuracy seem to begin to converge during the training
process. There is a significant increase in accuracy values
at the beginning of the training within 50 epochs. Whereas
training loss presents a significant trend in decreasing,
the validation loss does not decrease obviously after 200
epochs. We should early stop the training process before 200
epochs in case of overfitting.

5.1 Model evaluation

The aforementioned statistical metrics are the top met-
rics used to measure the performance of classification
algorithms. Our proposed PneuNet obtained a prediction
accuracy of 95.16%, whereas the precision, recall, and F1-
Score for class COVID-19 are 96.95%, 98.45%, and 97.69%
respectively. The class-wise performance of PneuNet is pre-
sented in Table 7, which is generated through the confusion
matrix shown in Fig. 7.

We compare the proposed PneuNet with some other
deep learning methods from previous work [28, 30, 31,
43] based on the three-category classification using the
same dataset. Table 8 shows the comparison between our
proposed PneuNet and other deep learning, where the
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Fig. 6 History during training: history of cross-entropy loss (a) and history of categorical accuracy (b)

aforementioned statistical metrics are used. Our proposed
PneuNet outperforms other models in all aspects and has
a significant increase in overall precision, from 93.55%
(Wang et al. [28], COVID-Net) to 97.11%.

CoroNet [31] and COVID-Net [31] are conventional
deep neural networks based on convolution layers and
residual connections. However, the model from Siltuala et
al. [43] is a VGG-16 model concatenating with traditional
VIT modular, and DarkCovidNet [30] takes a heat map
of the original CXR images into account inspired by self-
attention. Apart from our proposed model, all CNN-based
models perform better than transform models on the same
dataset. It could be derived that simply cropping the raw
image is weak in extracting the latent spatial features,
especially when the texture of the lung does not present
an apparent difference between that from CXR images of
COVID-19 and of other pneumonia. However, latent spatial
features in high dimensions could be extracted from CNN
methods, allowing the transformer encoder to perform a
better prediction.

Table 7 Statistical performance of PneuNet on three-category
classification

Class Precision (%) Recall (%) F-1 Score (%)

COVID-19 96.95 98.45 97.69

None Pneumonia 96.64 97.35 96.99

Pneumonia 97.74 96.37 97.10

Average 97.11 97.39 97.26

Prediction Accuracy 95.16%

5.2 Model performance under other circumstances

We also test the performance of the proposed PneuNet
on binary classification and four-category classification to
detect its robustness. The binary dataset is generated from
the original dataset by deleting CXR images of normal
pneumonia from both the training set and validation set,
whereas the four-category dataset is generated from the
original dataset by relabeling bacterial pneumonia against
viral pneumonia from normal pneumonia. The confusion
matrices are shown in Fig. 8 and the aforementioned
statistical metrics are shown in Table 9.

Fig. 7 The confusion matrix for three-category classification: None
Pneumonia, Normal Pneumonia, and COVID-19
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Table 8 Comparison among
proposed PneuNet and other
deep learning methods

Model Precision (%) Recall (%) F-1 Score (%) Accuracy (%)

Siltuala et al. [43] Attention-based VGG-16 85.61 80.10 82.77 81.36

Ozturk et al. [30] DarkCovidNet 89.96 85.35 87.59 87.02

Khan et al. [31] CoroNet 91.85 94.63 93.22 91.30

Wang et al. [28] COVID-Net 93.55 93.33 93.44 93.33

Proposed PneuNet 97.11 97.39 97.26 95.16

Fig. 8 Confusion matrix
generated from binary
classification model (a) and
four-category classification
model (b)

Table 9 Statistical
performance of PneuNet Class Precision (%) Recall (%) F-1 Score (%)

Binary classification

COVID-19 98.87 99.00 98.93

None Pneumonia 99.00 98.67 98.83

Average 98.94 98.84 98.88

Prediction accuracy 99.32%

Four-category classification

COVID-19 94.17 95.76 94.96

None Pneumonia 90.83 89.34 90.07

Bacterial Pneumonia 85.83 88.03 86.92

Viral Pneumonia 87.50 85.37 86.42

Average 89.58 89.62 89.59

Prediction accuracy 90.03%
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Table 10 Comparison of
statistical performance among
PneuNet and other deep
learning models

Model Precision (%) Recall (%) F-1 Score (%) Accuracy (%)

Binary classification

Rarin et al. [26] InceptionV3 82.4 100 90.3 97.7

Ozturk et al. [30] DarkCovidNet 98.04 95.13 96.56 98.08

Khan et al. [31] CoroNet 98.33 99.31 98.81 99.01

Proposed PneuNet 98.94 98.84 98.88 99.32

Four-category classification

Siltuala et al. [43] Attention-based VGG-16 87.48 96.31 86.89 86.15

Ozturk et al. [30] DarkCovidNet 89.96 85.35 87.59 87.02

Khan et al. [31] CoroNet 87.61 87.82 87.71 87.36

Proposed PneuNet 89.58 89.62 89.59 90.03

We compare the prediction performance with other
related works [26, 30, 31, 43], as shown in Table 10
for binary classification and four-category classification.
Our proposed PneuNet performed better than the above
models with a prediction accuracy of 99.32%, where the
precision, recall, and F1-Score for class COVID-19 are
98.94%, 98.84%, and 98.88% respectively when detecting
COVID-19 out of none pneumonia.

5.3 Future work

PneuNet exhibits good performance compared to other deep
learning methods, but there are still several limitations,
especially when dealing with multi-category classification
problems compared with some CNN-based models such
as LDC-NET [57]. This can be caused by a couple of
reasons. Firstly, compared with computerized tomography
(CT) images, CXR images only contain planar texture
from one fixed angle of view, having lost plenty of
lung texture such as that on the coronal plane. In the
meanwhile, our proposed PneuNet used ResNet18 for
feature extraction but is ready to use other deeper CNN
encoders, such as ResNet51, to extract latent patterns much
deeper in higher dimensions. Future directions thus include
augmenting the dataset and applying a deeper CNN encoder
dealing with complex input such as CT images, as well
as extending the application of our proposed PneuNet,
such as predicting how severe the patient is and predicting
dates before patients are cured, which could be useful
for proper and efficient allocation of medical resources.
Finally, like most other deep learning models, our proposed
PneuNet is a black box model. The feature extraction
process, especially the channel-wise transformer encoder, is
nonrepresentational and complicated. So far, we still cannot

find a proper method to make better the model interpretable.
This is another important direction for our follow-up
research.

6 Conclusion

Quick and efficient diagnosis in the early stage is critical
during such a tough time caused by the raging plague.
Inspired by high diagnostic demand but limited medical
resources, we propose a deep learning method named
PneuNet, which is based on ResNet18 and applied to extract
spatial features, to detect COVID-19 cases from the chest
X-ray images. The proposed PneuNet is evaluated on a
combined CXR dataset and reached a 95.13% prediction
accuracy as well as a 95.16% precision, which is state of the
art over other deep learning methods. The model performed
well in binary classification and obtained a 99.29% training
accuracy as well as a 98.79 precision when distinguishing
COVID-19 against none pneumonia. PneuNet also obtained
a promising prediction accuracy (86.94%) on four-category
classification among COVID-19, none pneumonia, bacterial
pneumonia, and viral pneumonia, revealing its latent
capacity in the diagnosis of more kinds of pneumonia based
on CXR images. The performance of our proposed PneuNet
could get improved with the extension of the dataset in
the future. From the comparison with other deep learning
methods, it is convincing that channel-based attention has
great potential in the field of feature recognition and image
classification.

Despite the convincing prediction result obtained from
PneuNet, the model still needs clinical study and testing
but reveals great potential in quick remote diagnosis of
suspected COVID-19 patients on a large scale.
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