Skip to main content
Log in

Optimization of opacity function for computed tomography volume rendered images of the prostate using magnetic resonance reference volumes

  • Original article
  • Published:
International Journal of Computer Assisted Radiology and Surgery Aims and scope Submit manuscript

Abstract

Objective To enhance the opacity function for computed tomography (CT)-based prostate volume rendered (VR) images using reference magnetic resonance (MR) images.

Materials and Methods After simulating on phantoms, ten patients with CT and MR datasets were identified/ registered. Optimal VR images were produced, and intra-modality and cross-modality errors [mean distance in voxel units (VU) from VR partial surface to target] were computed. On the CT VR images, a global transformation was computed to relate the opacity functions obtained using CT reference volumes with those obtained using MR reference volumes.

Results The prostate was better visualized on MR than CT, as the intra-modality errors obtained using MR (2.78 ± 1.02 VU) were lower than on CT (3.68 ± 2.15 VU). Despite similar qualitative results as the intra-modality CT images, the cross-modality errors obtained using the individual patient data (2.77 ± 0.99 VU) and using the global transformation (2.89 ± 0.99 VU) were each closer (P = 0.010 and P = 0.011, respectively) to the intra-modality MR errors than were the intra-modality CT errors.

Conclusion By optimizing the opacity function using MR reference images, CT VR images of the prostate could closely represent the prostate defined on MR; furthermore, this process can be approximated by a simple transformation. Overall, the errors were reduced to a level (<3 VU) justifying further exploration in CT-based radiotherapy treatment planning.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. Jani AB, Hellman S (2003) Early prostate cancer: clinical decision-making. Lancet 361:1045–1053

    Article  PubMed  Google Scholar 

  2. Horwitz EM, Hanks GE (2000) External beam radiation therapy for prostate cancer. CA Cancer J Clin 50:349–375

    PubMed  CAS  Google Scholar 

  3. Hanks GE, Lee WR, Hanlon AL et al (1996) Conformal technique dose escalation for prostate cancer: biochemical evidence of improved cancer control with higher doses in patients with pretreatment prostate-specific antigen >10 ng/ml. Int J Radiat Oncol Biol Phys 35:862–868

    Article  Google Scholar 

  4. Barth N (1990) An inverse treatment planning problem in radiation therapy. Int J Radiat Oncol Biol Phys 18:425–41

    PubMed  CAS  Google Scholar 

  5. Jani AB, Roeske JC, Rash C (2003) Intensity-modulated radiation therapy for prostate cancer. Clin Prostate Cancer 2:98–105

    PubMed  Google Scholar 

  6. Hanley J, Lumley MA, Mageras GS et al (1997) Measurement of patient positioning errors in three-dimensional conformal radiotherapy of the prostate. Int J Radiat Oncol Biol Phys 37:435–444

    Article  PubMed  CAS  Google Scholar 

  7. Beard CJ, Kijewski P, Bussiere M et al (1996) Analysis of prostate and seminal vesicle motion: implications for treatment planning. Int J Radiat Oncol Biol Phys 34:451–458

    Article  PubMed  CAS  Google Scholar 

  8. Cazzaniga LF, Marinoni MA, Bossi A et al (1998) Interphysician variability in defining the planning target volume in the irradiation of the prostate and seminal vesicles. Radiother Oncol 47:293–296

    Article  PubMed  CAS  Google Scholar 

  9. Fiorino C, Reni M, Bolognesi A et al (1998) Intra- and inter-observer variability in contouring prostate and seminal vesicles: implications for conformal treatment planning. Radiother Oncol 47:285–292

    Article  PubMed  CAS  Google Scholar 

  10. Valicenti RK, Sweet JW, Hauck WW et al (1999) Variation of clinical target volume definition in three-dimensional conformal radiation therapy for prostate cancer. Int J Radiat Oncol Biol Phys 44:931–935

    Article  PubMed  CAS  Google Scholar 

  11. Lebesque JV, Bruce AM, Kroes AP et al (1995) Variation in volumes, dose-Volume histograms, and estimated normal tissue complication probabilities of rectum and bladder during conformal radiotherapy of T3 prostate cancer. Int J Radiat Oncol Biol Phys 33:1109–1119

    Article  PubMed  CAS  Google Scholar 

  12. Chen LM, Lubich L, Chiru P et al (1996) Localization of the prostatic apex for radiotherapy planning: a comparison of two techniques. Br J Radiol 69:821–829

    Article  PubMed  CAS  Google Scholar 

  13. Sweeney PJ, Vijayakumar S, Sibley GS et al (1993) Comparison of CT-based treatment planning and retrograde urethography in determining the prostatic apex at simulation. Med Dosim 18:21–28

    PubMed  CAS  Google Scholar 

  14. Jani AB, Sychra JJ (1994) MR image classification algorithms for neurosurgical and stereotactic radiosurgical trajectory planning and volumetric analysis. Neurol Res 16:17–23

    Google Scholar 

  15. Ramsey CR, Oliver AL (1998) Magnetic resonance imaging based digitally reconstructed radiographs, virtual simulation, and three-dimensional treatment planning. Med Phys 25:1928–1934

    Article  PubMed  CAS  Google Scholar 

  16. Ramsey CR, Arwood D, Scaperoth D et al (1999) Clinical application of digitally-reconstructed radiographs generated from magnetic resonance imaging for intracranial lesions. Int J Radiat Oncol Biol Phys 45:797–802

    Article  PubMed  CAS  Google Scholar 

  17. Yin FF, Gao Q, Xie H et al (1998) MR image-guided portal verification for brain treatment field. Int J Radiat Oncol Biol Phys 40:703–711

    Article  PubMed  CAS  Google Scholar 

  18. Lee YK, Bollet M, Charles-Edwards G et al (2003) Radiotherapy treatment planning of prostate cancer using magnetic resonance imaging alone. Radiother Oncol 66:203–216

    Article  PubMed  Google Scholar 

  19. Mah D, Steckner M, Hanlon A et al (2002) MRI simulation: effect of gradient distortions on three-dimensional prostate cancer plans. Int J Radiat Oncol Biol Phys 53:757–765

    Article  PubMed  Google Scholar 

  20. Steenbakkers RJ, Deurloo KE, Nowak PJ et al (2003) Reduction of dose delivered to the rectum and bulb of the penis using MRI delineation for radiotherapy of the prostate. Int J Radiat Oncol Biol Phys 57:1269–1279

    Article  PubMed  Google Scholar 

  21. Khoo VS, Dearnaley DP, Finnigan DJ et al (1997) Magnetic resonance imaging (MRI): considerations and applications in radiotherapy treatment planning. Radiother Oncol 42:1–15

    Article  PubMed  CAS  Google Scholar 

  22. Drebin RA, Carpenter L, Hanrahan P (1988) Volume rendering. Comput Graph 22(4):65–74

    Article  Google Scholar 

  23. Rubin GD, Napel S, Leung AN (1996) Volumetric analysis of volumetric data: achieving a paradigm shift. Radiology 200:312–317

    PubMed  CAS  Google Scholar 

  24. Ney DR, Fishman EK, Magid D et al (1990) Volumetric rendering of computed tomography data: principles and practice. IEEE Comput Graph Appl 9:24–32

    Article  Google Scholar 

  25. Scatarige JC, Urban BA, Hellmann DB et al (2001) Three-dimensional volume-rendering CT angiography in vasculitis: spectrum of disease and clinical utility. J Comput Assist Tomogr 25:598–603

    Article  PubMed  CAS  Google Scholar 

  26. Rubin GD, Beaulieu CF, Argiro V et al (1996) Perspective volume rendering of CT and MR images: applications for endoscopic imaging. Radiology 200:564–568

    Google Scholar 

  27. Salgado R, Mulkens T, Bellinck P et al (2003) Volume rendering in clinical practice. a pictorial review. JBR-BTR 86:215–220

    PubMed  CAS  Google Scholar 

  28. Udupa JK, Hung HM, Chuang KS (1991) Surface and volume rendering in 3D imaging: a comparison. J Digital Imag 4:159–168

    Article  CAS  Google Scholar 

  29. Hohme KH, Hanson WA (1992) Interactive 3D-segmentation of MRI and CT volume using morphological operations. J Comput Assist Tomogr 16:285–294

    Article  Google Scholar 

  30. Pallotta S, Bucciolini M, Russo S et al (2006) Accuracy evaluation of image registration and segmentation tools used in conformal treatment planning of prostate cancer. Comput Med Imaging Graph 30:1–7

    Article  PubMed  Google Scholar 

  31. Kniss J, Kindlmann G, Hansen C (2002) Multi-dimensional transfer functions for interactive volume rendering. IEEE Trans Vis Comput Graph 8:270–285

    Article  Google Scholar 

  32. Sato Y, Westing A, Bhalerao S et al (2000) Tissue classification based on 3D local intensity structures for volume rendering. IEEE Trans Vis Comput Graph 6:160–179

    Article  Google Scholar 

  33. Laidlaw DH, Fleischer KW, Barr AH (1998) Partial-volume Bayesian classification of material mixture in MR volume data using voxel histograms. IEEE Trans Med Imag 17:74–86

    Article  CAS  Google Scholar 

  34. Souza A, Udupa JK, Saha PK (2005) Volume rendering in the presence of partial volume effects. IEEE Trans Med Imaging 24:223–235

    Article  PubMed  Google Scholar 

  35. Foley JD, Van Dam A, Feiner SK et al (1990) Viewing in three dimensions. In: Computer graphics: principles and practice, 2nd edn. Addison-Wesley, Reading, pp 229–283

  36. Jani AB, Pelizzari CA, Chen GTY et al (1997) Interactive tool for evaluating the utility of volume-rendered images versus sagittal plane-picked images of the prostate for radiotherapy treatment planning. RSNA Electronic J 1:http://ej. rsna.org

  37. Jani AB, Pelizzari CA, Chen GTY et al (1998) Accuracy of object depiction and opacity transfer function optimization in CT volume-rendered images. J Comput Assist Tomogr 22:459–470

    Article  PubMed  CAS  Google Scholar 

  38. Jani AB, Pelizzari CA, Chen GTY et al (2000) Volume rendering quantification algorithm for reconstruction of CT volume rendered structures: I. Cerebral arteriovenous malformations. IEEE Trans Med Imaging 19:12–24

    Article  CAS  Google Scholar 

  39. Jani AB, Irick JS, Pelizzari C (2005) Opacity transfer function optimization for volume-rendered computed tomography images of the prostate. Acad Radiol 12:761–770

    Article  PubMed  Google Scholar 

  40. Paliwal BR, Ritter MA, McNutt TR et al (1998) A solid water pelvic and prostate phantom for imaging, volume rendering, treatment planning, and dosimetry for an RTOG multi-institutional, 3-D dose escalation study. Radiation Therapy Oncology Group. Int J Radiat Oncol Biol Phys 42: 205–211

    Article  PubMed  CAS  Google Scholar 

  41. Powell MJD (1964) An efficient method for finding the minimum of a function of several variables without calculating derivatives. Comput J 7:155–163

    Article  Google Scholar 

  42. Kindlmann G, Durkin JW (1998) Semi-automatic generation of transfer functions for direct volume rendering. In: Proceedings of IEEE Symposium on Volume Visualization, pp 79–86

  43. Chen L, Price RA Jr, Wang L et al (2004) MRI-based treatment planning for radiotherapy: dosimetric verification for prostate IMRT. Int J Radiat Oncol Biol Phys 60:636–647

    Article  PubMed  Google Scholar 

  44. Chen GT, Pelizzari CA, Levin DN (1990) Image correlation in oncology. Important Adv Oncol 1:131–141

    Google Scholar 

  45. Dawson-Saunders B, Trapp RG (1990) Basic and clinical biostatistics. Prentice Hall, East Norwalk

    Google Scholar 

  46. Lee EK, Fox T, Crocker I (2006) Simultaneous beam geometry and intensity map optimization in intensity-modulated radiation therapy. Int J Radiat Oncol Biol Phys 64:301–320

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ashesh B. Jani.

Additional information

Grant Support: This work was supported by an American Society of Therapeutic Radiology and Oncology (ASTRO) Junior Faculty Research Grant/Award, and was an oral presentation at the annual meeting of ASTRO in Philadelphia, PA in November 2006.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Jani, A.B., Johnstone, P.A.S., Fox, T. et al. Optimization of opacity function for computed tomography volume rendered images of the prostate using magnetic resonance reference volumes. Int J CARS 1, 285–293 (2007). https://doi.org/10.1007/s11548-006-0065-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11548-006-0065-1

Keywords

Navigation