Skip to main content
Log in

Visual enhancement of digital ultrasound images: wavelet versus Gauss–Laplace contrast pyramid

  • Original article
  • Published:
International Journal of Computer Assisted Radiology and Surgery Aims and scope Submit manuscript

Abstract

Purpose Noise is the principal factor which hampers the visual quality of ultrasound images, sometimes leading to misdiagnosis. Speckle noise in ultrasound images can be modeled as a random multiplicative process. Speckle reduction techniques were applied to digital ultrasound images to suppress noise and improve visual quality. Rationale Previous reports indicate that wavelet filtering performs best for speckle reduction in digital ultrasound images. Reportes on x-ray images compared wavelet filtering with Laplace-Gauss contrast enhancement (LGCE) showed that the LCGE performed better. As LGCE was never been applied to Ultrasound images, this study compared two filtering approaches for speckle reduction on digital ultrasound images.

Methods Two methods were implemented and compared. The first method uses the wavelet soft threshold (WST) approach for enhancement. The second method is based on multiscale Laplacian-Gaussian contrast enhancement (LGCE). LGCE is derived from the combination of a Gaussian pyramid and a Laplacian one. Contrast enhancement is applied on local scale by using varying sizes of median filter.

Results The two methods were applied to synthetic and real ultrasound images. A comparison between WST and LGCE methods was performed based on noise level, artifacts and subjective image quality.

Conclusion WST visual enhancement provided better results than LGCE for selected ultrasound images.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Godman JW (1976). Some fundamental properties of speckle. JOSA 66: 11

    Google Scholar 

  2. Tur M (1982). When Speckle is multiplicative. Appl Opt 21: 7

    Article  Google Scholar 

  3. Hillery D (1991). Iterative wiener filters for images restoration. IEEE Trans Signal Process 39: 1892–1899

    Article  Google Scholar 

  4. Frost VS (1982). A model for radar images and its application to adaptive digital filtering of multiplicative noise. IEEE Trans Pattern Anal Mach Intell 4-2: 157–166

    Google Scholar 

  5. Unser M and Aldroubi A (1996). A review of wavelets in biomedical applications. Proc IEEE 84: 626–638

    Article  Google Scholar 

  6. Saad A, Elassad S and Barba D (1996). Speckle filtering in SAR images by contrast modification, comparison with a large class of filters. Ann Telecommun 51(5): 233–244

    Google Scholar 

  7. Michailovich O and Tannenbaum A (2006). Despeckling of ultrasound images. IEEE Trans Ultrasonics Ferroelect Freq Control 53(1): 64–78

    Article  Google Scholar 

  8. Frost VS (1982). A model for radar images and its application to adaptive digital filtering of multiplicative noise. IEEE Trans PAMI 4(2): 1982

    Google Scholar 

  9. Touzi R (1988) Analyse d’image radar en teledetection: Amelioration radiometriques filtrage de speckle et detections des contours. PhD Thesis, University Paul Sabatier Toulouse France Mars

  10. Lee JS (1981). Speckle analysis and filtering smoothing of synthetic aperture radar image. Comput Graph Image Process 17: 24–32

    Article  Google Scholar 

  11. Lee JS (1980). Digital image enhancement and noise filtering by use of local statistics. IEEE Trans PAMI 2(2): 165–168

    Google Scholar 

  12. Lee JS (1983). A simple smoothing algorithm for SAR images. IEEE Trans Syst Man Cybern SMC- 13(1): 85–89

    Google Scholar 

  13. Zamperoni P (1993). An adaptive rank order filter for image enhancement depending on a measure of local spatial order. GRETSI, France, 543–547

    Google Scholar 

  14. Mallat S and Zhang S (1992). Characterization of signals from multiscale edges. IEEE Trans Pattern Anal Mach Intell 14: 710–732

    Article  Google Scholar 

  15. Vuylsteke P and Schoeters E (1994). Multiscale image contrast amplification (MUSICATM). Proc SPIE Image Process 2167: 551–560

    Article  Google Scholar 

  16. Laine A, Fan J and Yang W (1995). Wavelets for contrast enhancement of digital mammography. IEEE Eng Med Biol Magn 14: 536–574

    Article  Google Scholar 

  17. Dippel S, Stahl M, Wiemker R and Blaffert T (2002). Multiscale contrast Enhancement for radiographies: Lapacian pyramid versus Fast wavelet Transform. IEEE Trans Med Imaging 21(4): 343– 353

    Article  PubMed  Google Scholar 

  18. Achim A, Bezerianos A and Tsakalides P (2001). Novel Bayesian multiscale method for Speckle removal in medical ultrasound images. IEEE Trans Med Imaging 20: 8

    Article  Google Scholar 

  19. Pizurica A, Philips W, Lemahieu I and Acheroy M (2003). A versatile wavelet domain noise filtration technique for medical imaging. IEEE Trans Med Imaging 22(3): 323–331

    Article  PubMed  Google Scholar 

  20. Zong X, Laine A and Geiser E (1998). Speckle reduction and contrast enhancement of echocardiograms via multiscale nonlinear processing. Trans Med Imaging 17(4): 532–540

    Article  CAS  Google Scholar 

  21. Loizou CP, Pattichis CS, Christodoulou CI, Istepanian RSH, Pantziaris M and Nicolaides A (2005). Comparative evaluation of despeckle filtering in ultrasound imaging of the carotid artery. IEEE Trans Ultras Ferroel Freq Control 52(10): 653–669

    Google Scholar 

  22. Donoho D (1995). De-noising by soft thresholding. IEEE Trans Inf Theory 41: 613–621

    Article  Google Scholar 

  23. Saad A, Zaart A, Al-Mejrad A (2004) Speckle reduction in digital ultrasound images by multi-resolution contrast enhancement. In: International conference on biomedical engineering 2004, IFMBE, BioMed, Kuala Lumpur, Malaysia

  24. Wang Z, Bovik A, Sheikh H and Simoncelli E (2004). Image quality assessment: from error measurement to structural similarity. IEEE Trans Imag Process 13(4): 600–612

    Article  Google Scholar 

  25. Loizou CP, Pattichis CS, Pantziaris M, Tyllis T and Nicolaides A (2006). Quantitative quality evaluation of ultrasound imaging in the carotid artery. Med Biol Eng Comput 44(5): 414–426

    Article  PubMed  CAS  Google Scholar 

  26. Jain AK (1989). Fundamental of digital image processing. Prentice-Hall, Englewood Cliffs

    Google Scholar 

  27. Zong X, Laine AF and Geiser EA (1998). Speckle reduction and contrast enhancement of echocardiograms via multiscale nonlinear processing. IEEE Trans Med Imaging 17: 532–540

    Article  PubMed  CAS  Google Scholar 

  28. Achim A, Bezerianos A and Tsakalides P (2001). Novel Bayesian multiscale method for speckle removal in medical ultrasound images. IEEE Trans Med Imaging 20: 772–783

    Article  PubMed  CAS  Google Scholar 

  29. Loupas T, McDicken WN and Allan PL (1989). An adaptive weighted median filter for speckle suppression in medical ultrasonic images. IEEE Trans Circuits Syst 36: 129–135

    Article  Google Scholar 

  30. Hao X, Gao S and Gao X (1999). A novel multiscale nonlinear thresholding method for ultrasound speckle suppressing. IEEE Trans Med Imaging 18: 787–794

    Article  PubMed  CAS  Google Scholar 

  31. Rakotomamonjy A, Deforge P and Marche P (2000). Wavelet-based speckle noise reduction in ultrasound B-scan images. Ultrason Imaging 22: 73–94

    PubMed  CAS  Google Scholar 

  32. Strang G and Nguyen T (1997). Wavelets and filter banks. Wellesley–Cambridge Press, UK

    Google Scholar 

  33. Meyer Y (1993). Wavelets and operators. Cambridge Press, UK

    Google Scholar 

  34. Daubechies I (1992) Ten lectures on wavelets: SIAM

  35. Vetterli M and Herely C (1992). Wavelets and filter banks: theory and design. Trans Signal Process 40: 2207–2232

    Article  Google Scholar 

  36. Beylkin G, Coifman R and Rokhlin V (1991). Fast wavelet transforms and numerical algorithms. Commun Pure Appl Math 44: 141–183

    Article  Google Scholar 

  37. Luisiera F, Blua T, Forsterb B , Unsera M (2005) Which wavelet bases are the best for image denoising? In: Proceedings of the SPIE optics and photonics, conference on mathematical methods: wavelet XI, San Diego, CA, USA, July 31–August 3, vol 5914, 1–12

  38. Abu-Rezq AN, Tolba AS, Khuwaja GA and Foda SG (1999). Best parameters selection for wavelet-packet-based compression of magnetic resonance images. Comput Biomed Res 32: 449–469

    Article  PubMed  CAS  Google Scholar 

  39. Cohen A, Daubechies I and Feauveau JC (1992). Bi-orthogonal bases of compactly supported wavelets. Commun Pure Appl Math 45: 485–560

    Article  Google Scholar 

  40. Phoong S-M, Kim CW, Vaidyanathan PP and Ansari R (1997). A new class of two-channel bi-orthogonal filter banks and wavelets bases. IEEE Trans Signal Process 43: 649–665

    Article  Google Scholar 

  41. Turcajova J and Kautsky R (1995). Discrete biorthogonal wavelet transform as block circulant matrices. Linear Algebra Appl 223: 393–413

    Article  Google Scholar 

  42. Muller P, Vidakovic B (eds) (1999) Bayesian inference in wavelet based models. In: Lecture notes in statistics. vol 141. Springer, New York

  43. Sattar F, Floreby L, Salomonsson G and Lövström B (1997). Image enhancement based on a nonlinear multiscale method. IEEE Trans Image Proc 6(6): 888–895

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ali S. Saad.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Saad, A.S. Visual enhancement of digital ultrasound images: wavelet versus Gauss–Laplace contrast pyramid. Int J CARS 2, 117–125 (2007). https://doi.org/10.1007/s11548-007-0122-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11548-007-0122-4

Keywords

Navigation