Skip to main content
Log in

From research to clinical practice: lessons learnt from the Cerefy brain atlases

  • Original Article
  • Published:
International Journal of Computer Assisted Radiology and Surgery Aims and scope Submit manuscript

Abstract

Purpose Experience in development and commercialization of the Cerefy brain atlases is shared and compared with some other neuroimaging resources.

Materials and Methods Cerefy includes four groups of atlases such as anatomical, functional, vascular and blood supply territories. This project developed 17 brain atlas products being used worldwide in clinical practice, medical research, and education. These atlases are incorporated in more than 1,000 neurosurgical workstations and distributed on over 4,000 CD-ROMs to individual clinicians and medical schools. These brain atlas products were compared with several academic and market performance indicators.

Results Cerefy resulted in 13 patents filed and 3 granted, 44 journal papers, 10 international awards, and revenue from commercial products. Numerous anonymous patients have been benefited directly or indirectly from this work, but the impact on surgical practice is more difficult to assess.

Conclusion The experience and the lessons learned in the Cerefy brain atlas development were identified, so this can guide other research groups in their translational efforts from bench to bedside.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Nowinski WL, Bryan RN and Raghavan R (1997). The electronic clinical brain atlas. Multiplanar navigation of the human brain. Thieme, New York

    Google Scholar 

  2. Nowinski WL, Fang A, Nguyen BT, Raphel JK, Jagannathan L, Raghavan R, Bryan RN and Miller G (1997). Multiple brain atlas database and atlas-based neuroimaging system. Comput Aided Surg 2(1): 42–66

    Article  PubMed  CAS  Google Scholar 

  3. Nowinski WL and Benabid AL (2002). New directions in atlas-assisted stereotactic functional neurosurgery. In: Germano, IM (eds) Advanced techniques in image-guided brain and spine surgery, pp 162–174. Thieme, New York

    Google Scholar 

  4. Nowinski WL (2001). Computerized brain atlases for surgery of movement disorders. Semin Neurosurg 12(2): 183–194

    Article  Google Scholar 

  5. Nowinski WL (2007) Towards construction of an ideal stereotactic brain atlas. Acta Neurochir (in press)

  6. Nowinski WL (2002). Electronic brain atlases: features and applications. In: Caramella, D and Bartolozzi, C (eds) 3D image processing: techniques and clinical applications. Medical Radiology series, pp 79–93. Springer, Berlin

    Google Scholar 

  7. Nowinski (2006) Human brain atlases in education, research and clinical application. Complex Medical Engineering. Springer, Berlin, pp 335–349

  8. Kim S, Brinkley JF and Cornelius R (2003). Profile of on-line anatomy information resources: design and instructional implications. Clin Anat 16(1): 55–71

    Article  PubMed  CAS  Google Scholar 

  9. Kikinis R, Shenton ME and Iosifescu DV (1996). A digital brain atlas for surgical planning, model-driven segmentation, and teaching. IEEE Trans Vis Comput Graph 2(3): 232–241

    Article  Google Scholar 

  10. Lehmann ED, Hawkes D and Hill D (1991). Computer-aided interpretation of SPECT images of the brain using an MRI-derived neuroanatomic atlas. Med Inf 16: 151–166

    Article  CAS  Google Scholar 

  11. Schmahmann JD, Doyon J and McDonald D (1999). Three-dimensional MRI atlas of the human cerebellum in proportional stereotaxic space. Neuroimage 10(3 Pt 1): 233–260

    Article  PubMed  CAS  Google Scholar 

  12. Bohm C, Greitz T and Eriksson L (1983). A computerized adjustable brain atlas. Eur J Nucl Med 15: 687–689

    Article  Google Scholar 

  13. Dev P, Coppa GP and Tancred E (1992). BrainStorm desiging in interactive neuroanatomy atlas. Radiology 185(P): 413

    Google Scholar 

  14. Greitz T, Bohm C and Holte S (1991). A computerized brain atlas: construction, anatomical content, and some applications. J Comput Assist Tomogr 15(1): 26–38

    Article  PubMed  CAS  Google Scholar 

  15. Toga AW, Ambach KL and Schluender S (1994). High-resolution anatomy from in situ human brain. Neuroimage 1(4): 334–344

    Article  PubMed  CAS  Google Scholar 

  16. Hohne KH, Pflesser B, Pommert A et al (2001) A realistic model of human structure from the Visible Human data. Method Inf Med 40(2):83–89

    Google Scholar 

  17. Schiemann T, Freudenberg J and Pflesser B (2000). Exploring the visible human using the VOXEL-MAN framework. Comput Med Imaging Graph 24(3): 127–132

    Article  PubMed  CAS  Google Scholar 

  18. Sundsten JW, Brinkley JF, Eno K and Prothero J (1994). The Digital Anatomist. Interactive brain atlas. CD ROM for the Macintosh. University of Washington, Seattle

    Google Scholar 

  19. Evans AC, Collins DL, Milner B (1992) An MRI-based stereotactic brain atlas from 300 young normal subjects. In: Proceedings of the 22nd symposium of the society for neuroscience, Anaheim, p 408

  20. Mazziotta JC, Toga AW and Evans AC (1995). A probabilistic atlas of the human brain: theory and rationale for its development. Neuroimage 2: 89–101

    Article  PubMed  CAS  Google Scholar 

  21. Thompson PM, Woods RP and Mega MS (2000). Mathematical/computational challenges in creating deformable and probabilistic atlases of the human brain. Hum Brain Mapp 9(2): 81–92

    Article  PubMed  CAS  Google Scholar 

  22. Toga AW and Thompson PM (2001). Maps of the brain. Anat Rec 265(2): 37–53

    Article  PubMed  CAS  Google Scholar 

  23. Van Essen DC and Drury HA (1997). Structural and functional analyses of human cerebral cortex using a surface-based atlas. J Neurosci 17(18): 7079–7102

    PubMed  CAS  Google Scholar 

  24. Van Essen DC, Lewis JW, Drury HA, Hadjikhani N, Tootell RB, Bakircioglu M and Miller MI (2001). Mapping visual cortex in monkeys and humans using surface-based atlases. Vis Res 41(10–11): 1359–1378

    Article  PubMed  CAS  Google Scholar 

  25. Nowinski WL, Belov, Benabid AL (2003) An algorithm for rapid calculation of a probabilistic functional atlas of subcortical structures from electrophysiological data collected during functional neurosurgery procedures. Neuroimage 18(1):143–155

  26. Thompson PM, Hayashi KM, Sowell ER, Gogtay N, Giedd JN, Rapoport JL, Janke AL, Rose SE, Semple J, Doddrell DM, Wang Y, Cannon TD, Toga AW, Zubicaray GI and Erp TG (2004). Mapping cortical change in Alzheimer’s disease, brain development, and schizophrenia. Neuroimage 23(Suppl 1): S2–S18

    Article  PubMed  Google Scholar 

  27. Mazziotta J (2002). The International Consortium for Brain Mapping: a probabilistic atlas and reference system for the human brain. In: Toga, AW and Mazziotta, JC (eds) Brain mapping. The methods 2nd edn, pp 727–755. Academic Press, Amsterdam

    Google Scholar 

  28. A.D.A.M. A.D.A.M Animated Dissection of Anatomy for Medicine. User’s Guide, A.D.A.M

  29. Dev P, Coppa GP and Tancred E (1992). BrainStorm desiging in interactive neuroanatomy atlas. Radiology 185(P): 413

    Google Scholar 

  30. Golland P, Kikinis R, Halle M, Umans C, Grimson WE, Shenton ME and Richolt JA (1999). Anatomy Browser: a novel approach to visualization and integration of medical information. Comput Aided Surg 4: 129–143

    Article  PubMed  CAS  Google Scholar 

  31. Hohne KH (1995). VOXEL-MAN, Part 1: Brain and skull. Springer, Heidelberg

    Google Scholar 

  32. Höhne KH, Pflesser B, Pommert A, Riemer M, Schiemann T, Schubert R and Tiede UA (1995). New representation of knowledge concerning human anatomy and function. Nat Med 1(6): 506–511

    Article  PubMed  Google Scholar 

  33. Brinkley JF, Bradley SW, Sundsten JW and Rosse C (1997). The Digital Anatomist information system and its use in the generation and delivery of Web-based anatomy atlases. Comput Biomed Res 30(6): 472–503

    Article  PubMed  CAS  Google Scholar 

  34. http://www.cerefy.com/download/BrainAtlas_brochure.pdf

  35. Schaltenbrand G and Wahren W (1977). Atlas for Stereotaxy of the Human Brain. Georg Thieme, Stuttgart

    Google Scholar 

  36. Talairach J and Tournoux P (1988). Co-Planar Stereotactic Atlas of the Human Brain. Georg Thieme, Stuttgart

    Google Scholar 

  37. Bailey SG (1959). Introduction to stereotaxis with an atlas of the human brain. Georg Thieme, Stuttgart

    Google Scholar 

  38. Ono M, Kubik S and Abernathey CD (1990). Atlas of the cerebral sulci. Georg Thieme, Stuttgart

    Google Scholar 

  39. Talairach J and Tournoux P (1993). Referentially oriented cerebral MRI anatomy: atlas of stereotaxic anatomical correlations for gray and white matter. Georg Thieme, Stuttgart

    Google Scholar 

  40. Serra L, Nowinski WL, Poston T, Ng H, Lee CM, Chua GG and Pillay PK (1997). The Brain Bench: virtual tools for stereotactic frame neurosurgery. Med Image Anal 1(4): 317–329

    Article  PubMed  CAS  Google Scholar 

  41. Kockro RA, Serra L, Yeo TT, Chan C, Sitoh YY, Chua GG, Ng H, Lee E, Lee YH and Nowinski WL (2000). Planning and simulation of neurosurgery in a virtual reality environment. Neurosurgery 46(1): 118–137

    Article  PubMed  CAS  Google Scholar 

  42. Nowinski WL, Yang GL and Yeo TT (2000). Computer-aided stereotactic functional neurosurgery enhanced by the use of the multiple brain atlas database. IEEE Trans Med Imaging 19(1): 62–69

    Article  PubMed  CAS  Google Scholar 

  43. Nowinski WL, Thirunavuukarasuu A and Kennedy DN (2000). Brain atlas for functional imaging. Clinical and research applications. Thieme, New York

    Google Scholar 

  44. Nowinski WL, Thirunavuukarasuu A and Bryan RN (2001). The Cerefy student brain atlas. KRDL, Singapore

    Google Scholar 

  45. Nowinski WL, Thirunavuukarasuu A and Bryan RN (2002). The Cerefy atlas of brain anatomy an introduction to reading radiological scans for students, teachers, and researchers. Thieme, New York

    Google Scholar 

  46. Nowinski WL, Thirunavuukarasuu A and Benabid AL (2004). The Cerefy clinical brain atlas. Thieme, New York

    Google Scholar 

  47. Nowinski WL, Belov D, Pollak P and Benabid AL (2004). A probabilistic functional atlas of the human subthalamic nucleus. Neuroinformatics 2(4): 381–398

    Article  PubMed  Google Scholar 

  48. Nowinski WL, Belov D, Pollak P and Benabid AL (2005). Statistical analysis of 168 bilateral subthalamic nucleus implantations by means of the probabilistic functional atlas. Neurosurgery 57(4): 319–330

    Article  PubMed  Google Scholar 

  49. Nowinski WL, Thirunavuukarasuu A and Benabid AL (2005). The Cerefy clinical brain atlas: enhanced edition with surgical planning and intraoperative support. Thieme, New York

    Google Scholar 

  50. Nowinski WL, Thirunavuukarasuu A, Volkau I, Marchenko Y and Runge V (2008). The Cerefy atlas of cerebral vasculature. Thieme, New York

    Google Scholar 

  51. Nowinski WL, Thirunavuukarasuu A, Volkau I, Baimuratov R, Hu Q, Aziz A and Huang S (2005). Three-dimensional atlas of the brain anatomy and vasculature. Radiographics 25(1): 263–271

    Article  PubMed  Google Scholar 

  52. Nowinski WL, Volkau I, Baimouratov R, Thirunavuukarasuu A, Hu Q, Luo S, Huang S, Runge V (2005) A reference atlas of cerebral vasculature. American Society of Neuroradiology, ASNR 43rd Annual Meeting. Toronto, Canada, p 441

  53. Nowinski WL, Thirunavuukarasuu A, Volkau I, Runge VM, Salamon N, Salamon G (2006) Interactive atlas of cerebral vasculature, 92 Radiological Society of North America scientific assembly and annual meeting program 2006, Chicago, USA, p 884

  54. Nowinski WL and Belov D (2003). The Cerefy Neuroradiology Atlas: a Talairach–Tournoux atlas-based tool for analysis of neuroimages available over the internet. Neuroimage 20(1): 50–57

    Article  PubMed  Google Scholar 

  55. Nowinski WL, Qian G, Bhanu Prakash KN, Hu Q and Aziz A (2006). Fast Talairach transformation for magnetic resonance neuroimages. J Comput Assist Tomogr 30(4): 629–641

    Article  PubMed  Google Scholar 

  56. Nowinski WL, Qian GY, Hu Q, KN Bhanuprakash, Ivanov N, Huang S, AS Parimal, Liu J (2005) Fast and automatic interpretation of normal morphological brain scans by using an atlas with non-linear warping. Program 91st Radiological Society of North America Scientific Assembly and Annual Meeting RSNA 2005, Chicago, IL, USA, p 857

  57. Nowinski WL, Qian G, Bhanu Prakash KN, Thirunavuukarasuu A, Hu QM, Ivanov N, Parimal AS, Runge VL and Beauchamp NJ (2006). Analysis of ischemic stroke MR images by means of brain atlases of anatomy and blood supply territories. Acad Radiol 13(8): 1025–1034

    Article  PubMed  Google Scholar 

  58. Nowinski WL, Qian G, Bhanu Prakash KN, Volkau I, Bilello M, Beauchamp NJ (2006) A CAD system for stroke MR and CT. 92 Radiological Society of North America scientific assembly and annual meeting program 2006, Chicago, USA, p 789

  59. Nowinski WL, Qian GY, Bhanu Prakash KN, Volkau I, Thirunavuukarasuu A, Beauchamp NJ, Runge VW, Ananthasubramaniam A, Liu J, Qiao Y, Hu Q, Bilello (2005) Atlas-assisted MR stroke image interpretation by using anatomical and blood supply territories atlases. Program 91st Radiological Society of North America scientific assembly and annual meeting RSNA 2005, Chicago, IL, USA, p 857

  60. Nowinski WL, Qian GY, Bhanu Prakash KN, Volkau I, Hu Q, Thirunavuukarasuu A, Ivanov N, Parimal AS, Qiao Y, Ananthasubramaniam A, Huang S, Runge VM and Beauchamp NJ (2006). Design and development of a computer aided diagnosis system for processing of acute ischemic stroke MR images. WSEAS Trans Biol Biomed 3(6): 401–407

    Google Scholar 

  61. Nowinski WL, Belov D, Thirunavuukarasuu A and Benabid AL (2005). A probabilistic functional atlas of the VIM nucleus constructed from pre-, intra- and post-operative electrophysiological and neuroimaging data acquired during the surgical treatment of Parkinson’s disease patients. Stereot Funct Neurosurg 83: 190–196

    Article  Google Scholar 

  62. Nowinski WL, Belov D and Benabid AL (2002). A community-centric Internet portal for stereotactic and functional neurosurgery with a probabilistic functional atlas. Stereot Funct Neurosurg 79: 1–12

    Article  Google Scholar 

  63. Benabid AL, Nowinski WL (2003) Intraoperative robotics for the practice of neurosurgery: a surgeon’s perspective, In: Apuzzo ML (ed) The operating room for the 21st century. American association of neurological surgeons, Rolling Meadows, pp 103–118

  64. Nowinski WL (1998). Anatomical targeting in functional neurosurgery by the simultaneous use of multiple Schaltenbrand-Wahren brain atlas microseries. Stereot Funct Neurosurg 71(3): 103–116

    Article  CAS  Google Scholar 

  65. Nowinski WL (2001). Modified Talairach landmarks. Acta Neurochir 143(10): 1045–1057

    Article  CAS  Google Scholar 

  66. Nowinski WL and Bhanu Prakash KN (2005). Dorso-ventral extension of the Talairach transformation and its automatic calculation for MR Neuroimages. J Comput Assist Tomogr 29(6): 863–879

    Article  PubMed  Google Scholar 

  67. Bhanu Prakash KN, Hu Q, Aziz A and Nowinski WL (2006). Rapid and automatic localization of the anterior and posterior commissure point landmarks in MR volumetric neuroimages. Acad Radiol 13(1): 36–54

    Article  PubMed  CAS  Google Scholar 

  68. Hu Q, Qian G and Nowinski WL (2005). Fast, accurate and automatic extraction of the modified Talairach cortical landmarks from MR images. Magn Reson Med 53: 970–976

    Article  PubMed  Google Scholar 

  69. Nowinski WL (2004). Co-registration of the Schaltenbrand-Wahren microseries with the probabilistic functional atlas. Stereot Funct Neurosurg 82: 142–146

    Article  Google Scholar 

  70. Nowinski WL, Thirunavuukarasuu A, Liu J and Benabid AL (2007). Correlation between the anatomical and functional human subthalamic nucleus. Stereot Funct Neurosurg 85: 88–93

    Article  Google Scholar 

  71. Nowinski WL and Thirunavuukarasuu A (2001). Electronic atlases show value in brain studies. Diagnostic Imaging Asia Pacific 8(2): 35–39

    Google Scholar 

  72. Nowinski WL and Thirunavuukarasuu A (2001). Atlas-assisted localization analysis of functional images. Med Image Anal 5(3): 207–220

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Wieslaw L. Nowinski.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Nowinski, W.L. From research to clinical practice: lessons learnt from the Cerefy brain atlases. Int J CARS 2, 211–220 (2007). https://doi.org/10.1007/s11548-007-0132-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11548-007-0132-2

Keywords

Navigation