Skip to main content

Advertisement

Log in

Maxillofacial surgery simulation using a mass-spring model derived from continuum and the scaled displacement method

  • Review Article
  • Published:
International Journal of Computer Assisted Radiology and Surgery Aims and scope Submit manuscript

Abstract

Purpose

Development of a maxillofacial surgery simulation software capable of predicting a patient’s appearance after surgery.

Methods

We have derived a new mass-spring model (MSM) equivalent to a linear finite element (FE) model for cubic elements. In addition, we propose the scaled displacement method as a new method to perform the simulation more realistically.

Results

The average error of eight soft tissue landmarks measured between 0.37 and 2.01 mm except from a landmark that had an error of 4.44 mm; values close to those obtained with the linear FE method. On the other hand, the scaled displacement method allows avoiding punctual stress concentration and bending effects making a much more realistic simulation in the region of the bone cut.

Conclusions

Good results have been achieved with our two proposed methods. In addition, the simple way in which MSM can be parallelized makes it an interesting alternative to FE method.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Xia J, Phillips C, Gateno J, Teichgraeber J, Christensen A, Gliddon M et al (2006) Cost-effectiveness analysis for computer-aided surgical simulation in complex cranio-maxillofacial surgery. J Oral Maxillofac Surg 64(12): 1780–1784. doi:10.1016/j.joms.2005.12.072

    Article  PubMed  Google Scholar 

  2. Zachow S, Hege HC, Deuflhard P (2006) Computer-assisted planning in cranio-maxillofacial surgery. Comput Assist Craniofac Reconstr Model 14(1): 53–64

    Google Scholar 

  3. Mollemans W, Schutyser F, Nadjmi N, Maes F, Suetens P (2007) Predicting soft tissue deformations for a maxillofacial surgery planning system: From computational strategies to a complete clinical validation. Med Image Anal 11(3): 282–301. doi:10.1016/j.media.2007.02.003

    Article  PubMed  CAS  Google Scholar 

  4. Krüger J, Westermann R (2003) Acceleration techniques for GPU-based volume rendering. Proc IEEE Vis Conf

  5. Buchart C, Borro D, Amundarain A (2007) A GPU interpolating reconstruction from unorganized points. Posters Proc ACM SIGGRAPH

  6. Gibson S, Mirtich B (1997) A survey of deformable modeling in computer graphics. Mitsubishi Electr Res Lab TR-97-19

  7. Moore P, Molloy D (2007) A survey of computer-based deformable models. Int Mach Vis Image Process Conf 55–66

  8. Meier U, López O, Monserrat C, Juan MC, Alcañiz M (2005) Real-time deformable models for surgery simulation: a survey. Comput Methods Programs Biomed 77: 183–197. doi:10.1016/j.cmpb.2004.11.002

    Article  PubMed  CAS  Google Scholar 

  9. Cotin S, Delingette H, Ayache N (2000) A hybrid elastic model allowing real-time cutting, deformations and force-feedback for surgery training and simulation. Vis Comput 16: 437–452. doi:10.1007/PL00007215

    Article  Google Scholar 

  10. Zachow S, Hierl Th, Erdmann B (2004) On the predictability of tissue changes after osteotomy planning in maxillofacial surgery: a comparison with postoperative results. Comput Assist Radiol Surg 648–653

  11. Nesme M, Marchal M, Promayon E, Chabanas M, Payan Y, Faure F (2005) Physically realistic interactive simulation for biological soft tissues. Recent Res Dev Biomech 2

  12. Picinbono G, Delingette H, Ayache N (2001) Non-linear and anisotropic elastic soft tissue models for medical simulation. IEEE Int Conf Robotics Autom

  13. Mollemans W, Schutyser F, Van Cleynenbreugel J, Suetens P (2003) Tetrahedral mass spring model for fast soft tissue deformation. Int Symp Surg Soft Tissue Model 2673: 145–154. doi:10.1007/3-540-45015-7_14

    Article  Google Scholar 

  14. Holberg C, Steinhäuser S, Rudzki I (2007) Surgically assisted rapid maxillary expansion: Midfacial and cranial stress distribution. Am J Orthod Dentofacial Orthop 132(6): 776–782. doi:10.1016/j.ajodo.2005.12.036

    Article  PubMed  Google Scholar 

  15. Chabanas M, Payan Y, Marecaux C, Swider P, Boutault F (2004) Comparison of linear and non-linear soft tissue models with post-operative CT scan in maxillofacial surgery. Int Symp Med Simul 19–27

  16. Maciel A, Boulic R, Thalmann D (2003) Deformable tissue parameterized by properties of real biological tissue. Int Symp Surg Simul Soft Tissue Model 74–87

  17. Sundaraj K, Mendoza C, Laugier C (2002) A fast method to simulate virtual deformable objects with force feedback. Contr Autom Robot Vis 1: 413–418

    Google Scholar 

  18. Benzley SE, Perry E, Merkley K, Clark B, Sjaardema G (1995) A comparison of all-hexahedral and all-tetrahedral Finite Element meshes for elastic and elasto-plastic analysis. Int Meshing Roundtable 179–191

  19. Delingette H, Ayache N (2004) Soft tissue modeling for surgery simulation. Elsevier, Oxford

    Google Scholar 

  20. Fung YC (1993) Biomechanics: Mechanical properties of living tissues. Springer, New York

    Google Scholar 

  21. Martins PALS, Natal Jorge RM, Ferreira AJM (2006) A comparative study of several material models for prediction of hyperelastic properties: Application to silicone-rubber and soft tissues. Strain 42(3): 135–147. doi:10.1111/j.1475-1305.2006.00257.x

    Article  Google Scholar 

  22. Gladilin E, Zachow S, Deuflhard P, Hege HC (2003) On constitutive modeling of soft tissue for the long-term prediction of cranio-maxillofacial surgery outcome. Comp Assist Radiol Surg 1256: 343–348

    Google Scholar 

  23. Mollemans W, Schutyser F, Nadjmi N, Suetens P (2005) Very fast soft tissue predictions with mass tensor model for maxillofacial surgery planning systems. Comp Assist Radiol Surg 1281: 491–496

    Google Scholar 

  24. Lim YJ, Hu J, Chang CY, Tardella N (2006) Soft tissue deformation and cutting simulation for the multimodal surgery training. Comput Based Med Syst. 19th IEEE Int Symp, pp 635–640

  25. Lloyd B, Szekely G, Harders M (2007) Identification of spring parameters for deformable object simulation. IEEE Trans Vis Comput Graph 13(5): 1081–1094. doi:10.1109/TVCG.2007.1055

    Article  PubMed  Google Scholar 

  26. Bianchi G, Solenthaler B, Székely G, Harders M (2004) Simultaneous topology and stiffness identification for mass-spring models based on FEM reference deformations. Med Image Comput Comput Assist Interv

  27. Baudet V, Beuve M, Jaillet F, Shariat B, Zara F (2007) Integrating tensile parameters in 3D mass-spring system. RR-LIRIS-2007-004

  28. Van Gelder A (1998) Approximate simulation of elastic membranes by triangulated spring meshes. J Graph Tools 3(2): 21–42

    Google Scholar 

  29. Etzmuß O, Gross J, Straßer W (2003) Deriving a particle system from continuum mechanics for the animation of deformable objects. IEEE Trans Vis Comput Graph 9(4): 538–550. doi:10.1109/TVCG.2003.1260747

    Article  Google Scholar 

  30. Wang X, Devarajan V (2005) 1D and 2D structured mass-spring models with preload. Vis Comput 21(7): 429–448. doi:10.1007/s00371-005-0303-5

    Article  CAS  Google Scholar 

  31. Delingette H (1998) Towards realistic soft tissue modeling in medical simulation. IEEE Special Issue Surg Simul 512–523

  32. Humphrey JD (2003) Continuum biomechanics of soft biological tissues. Math Phys Eng Sci 459(2029): 3–46. doi:10.1098/rspa.2002.1060

    Article  Google Scholar 

  33. Vandewalle P, Schutyser F, Van Cleynenbreugel J, Suetens P (2003) Modelling of facial soft tissue growth for maxillofacial surgery planning environments. Proc Int Symp Surg Simul Soft Tissue Model 2673: 27–37. doi:10.1007/3-540-45015-7_3

    Article  Google Scholar 

  34. Haile JM (1997) Molecular dynamics simulation: elementary methods. Wiley, New York

    Google Scholar 

  35. Brown J, Sorkin S, Bruyns C, Latombe JC, Montgomery K, Stephanides M (2001) Real-time simulation of deformable objects: Tools and application. Comput Animat 228–258

  36. Swennen GRJ, Schutyser F, Hausamen JE (2006) Three-dimensional cephalometry. Springer, Berlin

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to G. San Vicente.

Rights and permissions

Reprints and permissions

About this article

Cite this article

San Vicente, G., Buchart, C., Borro, D. et al. Maxillofacial surgery simulation using a mass-spring model derived from continuum and the scaled displacement method. Int J CARS 4, 89–98 (2009). https://doi.org/10.1007/s11548-008-0271-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11548-008-0271-0

Keywords

Navigation