Skip to main content

Advertisement

Log in

Combining a deformable model and a probabilistic framework for an automatic 3D segmentation of prostate on MRI

  • Review Article
  • Published:
International Journal of Computer Assisted Radiology and Surgery Aims and scope Submit manuscript

Abstract

Purpose

Accurate localization and contouring of prostate are crucial issues in prostate cancer diagnosis and/or therapies. Although several semi-automatic and automatic segmentation methods have been proposed, manual expert correction remains necessary. We introduce a new method for automatic 3D segmentation of the prostate gland from magnetic resonance imaging (MRI) scans.

Methods

A statistical shape model was used as an a priori knowledge, and gray levels distribution was modeled by fitting histogram modes with a Gaussian mixture. Markov fields were used to introduce contextual information regarding voxels’ neighborhoods. Final labeling optimization is based on Bayesian a posteriori classification, estimated with the iterative conditional mode algorithm.

Results

We compared the accuracy of this method, free from any manual correction, with contours outlined by an expert radiologist. In 12 cases, including prostates with cancer and benign prostatic hypertrophy, the mean Hausdorff distance and overlap ratio were 9.94 mm and 0.83, respectively.

Conclusion

This new automatic prostate MRI segmentation method produces satisfactory results, even at prostate’s base and apex. The method is computationally feasible and efficient.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. Fenster A, Surry K, Smith W, B Downey D (2004) The use of three-dimensional ultrasound imaging in breast biopsy and prostate therapy. Measurement 36(3–4): 245–256. doi:10.1016/j.measurement.2004.09.013

    Article  Google Scholar 

  2. Pekar V, McNutt TR, Kaus MR (2004) Automated model-based organ delineation for radiotherapy planning in prostatic region. Int J Radiat Oncol Biol Phys 60: 973–980

    Article  PubMed  Google Scholar 

  3. Chaney L, Pizer S, Joshi S et al (2004) Automatic male pelvis segmentation from CT images via statistically trained multi-object deformable m-rep models. Am Soc Therapeutic Radiol Oncol (ASTRO) 60: 153–154

    Google Scholar 

  4. McLaughlin PW, Troyer S, Berry S et al (2005) Functional anatomy of the prostate: implications for treatment planning. Int J Radiat Oncol Biol Phys 63: 479–491. doi:10.1016/j.ijrobp.2005.02.036

    PubMed  Google Scholar 

  5. Villeirs GM, Verstraete KL, DeNeve W et al (2005) Magnetic resonance imaging anatomy of the prostate and periprostatic area: a guide for radiotherapists. Radiother Oncol 76: 99–106. doi:10.1016/j.radonc.2005.06.015

    Article  PubMed  Google Scholar 

  6. Algan O, Hanks GE, Shaer AH (1995) Localization of the prostatic apex for radiation treatment planning. Int J Radiat Oncol Biol Phys 33: 925–930. doi:10.1016/0360-3016(95)00226-4

    PubMed  CAS  Google Scholar 

  7. Roach M III, Faillace-Akazawa P, Malfatti C et al (1996) Prostate volumes defined by magnetic resonance imaging and computerized tomographic scans for three-dimensional conformal radiotherapy. Int J Radiat Oncol Biol Phys 35(5): 1011–1018. doi:10.1016/0360-3016(96)00232-5

    PubMed  Google Scholar 

  8. Lee YK, Bollet M, Charles-Edward C et al (2003) Radiotherapy treatment planning of prostate cancer using magnetic resonance imaging alone. Radiother Oncol 66: 203–216. doi:10.1016/S0167-8140(02)00440-1

    Article  PubMed  Google Scholar 

  9. Pasquier D, Palos G, Castelain B et al (2004) MRI simulation for conformal radiation therapy of prostate cancer. Int J Radiat Oncol Biol Phys 60: 636–637

    Article  Google Scholar 

  10. Mazonakis M, Damilakis J, Varveris H, Prassopoulos P, Gourtsoyiannis N (2001) Image segmentation in treatment planning for prostate cancer using the region-growing technique. Br J Radiol 74: 243–248

    PubMed  CAS  Google Scholar 

  11. Klein S, van der Heide UA, Raaymakers BW, Kotte ANTJ, Staring M, Pluim JPW (2007) Segmentation of the prostate in MR images by atlas matching. In: International Symposium on Biomedical Imaging, pp 1300–1303

  12. Freedman D, Radke RJ, Zhang TJ, Jeong Y, Lovelock DM, Chen CT (2005) Model-based segmentation of medical imagery by matching distributions. IEEE Trans Med Imaging 24(3): 281–292. doi:10.1109/TMI.2004.841228

    Article  PubMed  Google Scholar 

  13. El Naqa I, Yang D, Apte A, Khullar D, Mutic S, Zheng J, Bradley JD, Grigsby P, Deasy JO (2007) Concurrent multimodality image segmentation by active contours for radiotherapy treatment planning. Med Phys 34(12): 4738–4749. doi:10.1118/1.2799886

    Article  PubMed  Google Scholar 

  14. Costa MJ, Novelas S, Ayache N, Delingette H (2007) Automatic segmentation of bladder and prostate using coupled 3D deformable models. Med Image Comput Comput Assist Interv Int Conf Med Image Comput Comput Assist Interv 10(Pt 1): 252–260

    PubMed  Google Scholar 

  15. Pasquier D, Lacornerie T, Vermandel M, Rousseau J, Lartigau E, Betrouni N (2007) Automatic segmentation of pelvic structures from MRI images for prostate cancer radiotherapy. Int J Radiat Oncol Biol Phys 68(2): 592–600. doi:10.1016/j.ijrobp.2007.02.005

    PubMed  Google Scholar 

  16. Cootes TC, Taylor CJ (2001) Statistical models of appearance for medical image analysis and computer vision. In: Proc SPIE Medical Imaging, San Diego, CA, vol 4322, pp 236–248

  17. Pasquier D, Lacornerie T, Vermandel M, Rousseau J, Lartigau E, Betrouni N (2007) Automatic segmentation of pelvic structures from MRI images for prostate cancer radiotherapy. Int J Radiat Oncol Biol Phys 68(2): 592–600. doi:10.1016/j.ijrobp.2007.02.005

    PubMed  Google Scholar 

  18. Betrouni N, Puech P, Dewalle AS, Lopes R, Dubois P, Vermandel M (2007) 3D automatic segmentation and reconstruction of prostate on MR images. Conf Proc IEEE Eng Med Biol Soc 1: 5259–5262. doi:10.1109/IEMBS.2007.4353528

    Google Scholar 

  19. Cootes TF, Hill A, Taylor CJ, Haslam J (1994) The use of active shape models for locating structures in medical images. Image Vis Comput 12: 355–366

    Article  Google Scholar 

  20. Pasquier D, Lacornerie T, Vermandel M, Rousseau J, Lartigau E, Betrouni N (2007) Automatic segmentation of pelvic structures from MRI images for prostate cancer radiotherapy. Int J Radiat Oncol Biol Phys 68(2): 592–600. doi:10.1016/j.ijrobp.2007.02.005

    PubMed  Google Scholar 

  21. Besag J (1974) Spatial interaction and the statistical analysis of lattice systems. J R Stat Soc [Ser A] 36: 192–236

    Google Scholar 

  22. Geman S, Geman D (1984) Stochastic relaxation, Gibbs distributions and the Bayesian restoration of images. IEEE Trans. Pattern Anal Mach Intell 6: 721–741

    Article  Google Scholar 

  23. Potts RB (1952) Some generalized order-disorder transitions. Proc Camb Philos Soc 48: 106–109

    Article  Google Scholar 

  24. Postaire JG, Vasseur C (1981) An approximate solution to normal mixture identification with application to unsupervised pattern classification. IEEE Trans Pattern Anal Mach Intell PAMI 3(2): 163–179

    Article  Google Scholar 

  25. Pasquier D, Lacornerie T, Vermandel M, Rousseau J, Lartigau E, Betrouni N (2007) Automatic segmentation of pelvic structures from MRI images for prostate cancer radiotherapy. Int J Radiat Oncol Biol Phys 68(2): 592–600. doi:10.1016/j.ijrobp.2007.02.005

    PubMed  Google Scholar 

  26. Bueno GFM, Burnham K et al (2001) Automatic Segmentation of clinical structures for RTP: evaluation of a morphological approach. MIUA ’01. BMVA Press, Sheffield, pp 36–73

  27. Pizer SM, Fletcher PT, Sarang J, Gash AG, Stough J, Thall A, Tracton G, Chaney EL (2005) A method and software for segmentation of anatomic object ensembles by deformable m-reps. Med Phys 32(5): 1335–1345. doi:10.1118/1.1869872

    Article  PubMed  Google Scholar 

  28. Broadhurst RE, Stough J, Pizer SM et al (2005) Histogram statistics of local model-relative image regions. In: Olsen OF, Florack L, Kuijper A (eds) Lecture notes in Computer Science, pp 71–82

  29. Lu W, Chen ML, Olivera GO, Ruchala KJ, Mackie TR (2004) Fast free-form deformable registration via calculus of variations. Phys Med Biol 49: 3067–3087. doi:10.1088/0031-9155/49/14/003

    Article  PubMed  Google Scholar 

  30. Foskey M, Davis B, Goyal L, Chang S, Chaney E, Strehl N, Tomei S, Rosenman JS (2005) Large deformation three-dimentional image registration in image-guided radiation therapy. Phys Med Biol 50(5869): 5892

    Google Scholar 

  31. Pasquier D, Lacornerie T, Vermandel M, Rousseau J, Lartigau E, Betrouni N (2007) Automatic segmentation of pelvic structures from MRI images for prostate cancer radiotherapy. Int J Radiat Oncol Biol Phys 68(2): 592–600. doi:10.1016/j.ijrobp.2007.02.005

    PubMed  Google Scholar 

  32. Pasquier D, Lacornerie T, Vermandel M, Rousseau J, Lartigau E, Betrouni N (2007) Automatic segmentation of pelvic structures from MRI images for prostate cancer radiotherapy. Int J Radiat Oncol Biol Phys 68(2): 592–600. doi:10.1016/j.ijrobp.2007.02.005

    PubMed  Google Scholar 

  33. Puech P, Betrouni N, Viard R, Villers A, Leroy X, Tre LL (2007) Prostate cancer computer-assisted diagnosis software using dynamic contrast-enhanced MRI. Conf Proc IEEE Eng Med Biol Soc 1: 5567–5570. doi:10.1109/IEMBS.2007.4353608

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Nasr Makni.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Makni, N., Puech, P., Lopes, R. et al. Combining a deformable model and a probabilistic framework for an automatic 3D segmentation of prostate on MRI. Int J CARS 4, 181–188 (2009). https://doi.org/10.1007/s11548-008-0281-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11548-008-0281-y

Keywords

Navigation