Skip to main content
Log in

Automated insertion of preformed cochlear implant electrodes: evaluation of curling behaviour and insertion forces on an artificial cochlear model

  • Original Article
  • Published:
International Journal of Computer Assisted Radiology and Surgery Aims and scope Submit manuscript

Abstract

Purpose

As a substantial part of our concept of a minimally invasive cochlear implant (CI) surgery, we developed an automated insertion tool. Studies on an artificial scala tympani model were performed in order to evaluate force application when using the insertion tool.

Methods

Contour electrodes were automatically inserted into a transparent cochlea model in Advance Off-Stylet technique. Occurring forces were measured by the use of a load cell and correlated with observed intracochlear movement of the electrode carriers.

Results

Mean insertion forces were measured up to 20 mN comparable to previous studies on temporal bones. The most influencing factor is the implant’s 2D curling behaviour in comparison to the 3D helical shape of the cochlea.

Conclusion

The study confirms the functionality and reliability of the automated insertion tool for insertion of preformed CI. Improved insertion strategies considering patient-specific anatomy become possible.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Wilson BS, Dorman MF (2008) Interfacing sensors with the nervous system: Lessons from the development and success of the cochlear implant. IEEE Sens J 8: 131–147. doi:10.1109/JSEN.2007.912917

    Article  Google Scholar 

  2. Lenarz T, Stöver T, Buechner A et al (2006) Temporal bone results and hearing preservation with a new straight electrode. Audiol Neurootol 11(Suppl 1): 34–41. doi:10.1159/000095612

    PubMed  Google Scholar 

  3. Roland P, Gstöttner W, Adunka O (2005) Method for hearing preservation in cochlear implant surgery. OperativeTech 16(2): 93–100

    Google Scholar 

  4. Gantz BJ, Turner C, Gfeller KE (2006) Acoustic plus electric speech processing: preliminary results of a multicenter clinical trial of the iowa/nucleus hybrid implant. Audiol Neurootol 11(Suppl 1): 63–68. doi:10.1159/000095616

    PubMed  Google Scholar 

  5. Gantz BJ, Turner C, Gfeller KE et al (2005) Preservation of hearing in cochlear implant surgery: advantages of combined electrical and acoustical speech processing. Laryngoscope 115(5): 796–802. doi:10.1097/01.MLG.0000157695.07536.D2

    Article  PubMed  Google Scholar 

  6. James C, Albegger K, Battmer R et al (2005) Preservation of residual hearing with cochlear implantation: how and why. Acta Otolaryngol 125(5): 481–491. doi:10.1080/00016480510026197

    Article  PubMed  Google Scholar 

  7. Roland JT, Zeitler DM, Jethanamest D et al (2008) Evaluation of the short hybrid electrode in human temporal bones. Otol Neurotol 29(4): 482–488. doi:10.1097/MAO.0b013e31816845eb

    Article  PubMed  Google Scholar 

  8. Turner C, Gantz BJ, Reiss L (2008) Integration of acoustic and electrical hearing. J Rehabil Res Dev 45(5): 769–778. doi:10.1682/JRRD.2007.05.0065

    Article  PubMed  Google Scholar 

  9. Turner CW, Reiss LAJ, Gantz BJ (2008) Combined acoustic and electric hearing: preserving residual acoustic hearing. Hear Res 242(1–2): 164–171. doi:10.1016/j.heares.2007.11.008

    Article  PubMed  Google Scholar 

  10. Adunka OF, Pillsbury HC, Kiefer J (2006) Combining perimodiolar electrode placement and atraumatic insertion properties in cochlear implantation—fact or fantasy? Acta Otolaryngol 126(5): 475–482. doi:10.1080/00016480500437393

    Article  PubMed  Google Scholar 

  11. Adunka OF, Radeloff A, Gstoettner WK et al (2007) Scala tympani cochleostomy. II. Topography and histology. Laryngoscope 117(12): 2195–2200. doi:10.1097/MLG.0b013e3181453a53

    Article  PubMed  Google Scholar 

  12. Briggs RJS, Tykocinski M, Stidham K et al (2005) Cochleostomy site: implications for electrode placement and hearing preservation. Acta Otolaryngol 125(8): 870–876. doi:10.1080/00016480510031489

    Article  PubMed  Google Scholar 

  13. Eshraghi AA, Yang NW, Balkany TJ (2003) Comparative study of cochlear damage with three perimodiolar electrode designs. Laryngoscope 113(3): 415–419. doi:10.1097/00005537-200303000-00005

    Article  PubMed  Google Scholar 

  14. Roland PS, Wright CG (2006) Surgical aspects of cochlear implantation: mechanisms of insertional trauma. Adv Otorhinolaryngol 64: 11–30

    PubMed  Google Scholar 

  15. Stöver T, Issing P, Graurock G et al (2005) Evaluation of the advance off-stylet insertion technique and the cochlear insertion tool in temporal bones. Otol Neurotol 26(6): 1161–1170. doi:10.1097/01.mao.0000179527.17285.85

    Article  PubMed  Google Scholar 

  16. Wardrop P, Whinney D, Rebscher SJ et al (2003) A temporal bone study of insertion trauma and intracochlear position of cochlear implant electrodes. I. Comparison of Nucleus banded and Nucleus Contour electrodes. Hear Res 203(1–2): 54–67. doi:10.1016/j.heares.2004.11.006

    Google Scholar 

  17. Wardrop P, Whinney D, Rebscher SJ et al (2005) A temporal bone study of insertion trauma and intracochlear position of cochlear implant electrodes. II. Comparison of Spiral Clarion and HiFocus II electrodes. Hear Res 203(1–2): 68–79. doi:10.1016/j.heares.2004.11.007

    Article  PubMed  Google Scholar 

  18. Schipper J, Klenzner T, Aschendorff A et al (2004) Navigation-controlled cochleostomy. Is an improvement in the quality of results for cochlear implant surgery possible? HNO 52(4): 329–335. doi:10.1007/s00106-004-1057-5

    Article  CAS  PubMed  Google Scholar 

  19. Labadie RF, Shah RJ, Harris SS et al (2005) In vitro assessment of image-guided otologic surgery: Submillimeter accuracy within the region of the temporal bone. Otolaryngol Head Neck Surg 132(3): 435–442. doi:10.1016/j.otohns.2004.09.141

    Article  PubMed  Google Scholar 

  20. Labadie RF, Chodhury P, Cetinkaya E et al (2005) Minimally invasive, image-guided, facial-recess approach to the middle ear: demonstration of the concept of percutaneous cochlear access in vitro. Otol Neurotol 26(4): 557–562. doi:10.1097/01.mao.0000178117.61537.5b

    Article  PubMed  Google Scholar 

  21. Labadie RF, Majdani O, Fitzpatrick JM (2007) Image-guided technique in neurotology. Otolaryngol Clin North Am 40(3): 611–624. doi:10.1016/j.otc.2007.03.006

    Article  PubMed  Google Scholar 

  22. Majdani O, Bartling SH, Leinung M et al (2008) Image-guided minimal-invasive cochlear implantation—experiments on cadavers. Laryngorhinootologie 87(1): 18–22. doi:10.1055/s-2007-966775

    Article  CAS  PubMed  Google Scholar 

  23. Majdani O, Bartling SH, Leinung M et al (2008) A true minimally invasive approach for cochlear implantation: High accuracy in cranial base navigation through flat-panel-based volume computed tomography. Otol Neurotol 29(2): 120–123. doi:10.1097/mao.0b013e318157f7d8

    Article  PubMed  Google Scholar 

  24. Baron S, Eilers H, Hornung O et al (2006) Conception of a robot assisted cochleostomy: first experimental results. In: Proceedings of the 7th international workshop on research and education in mechatronics (REM 2006), Stockholm, Schweden

  25. Brett PN, Taylor RP Proops D et al (2007) A surgical robot for cochleostomy. In: Conference proceedings of the IEEE engineering in medicine and biological society, pp 1229–1232

  26. Coulson CJ, Reid AP, Proops DW et al (2007) ENT challenges at the small scale. Int J Med Robot 3: 91–96. doi:10.1002/rcs.132

    CAS  PubMed  Google Scholar 

  27. Leinung M, Baron S, Eilers H et al (2006) Robotic guided minimal invasive cochleostomy: first results. In: Proceedings of the 5th annual conference of CURAC, Hannover, Germany

  28. Labadie RF, Noble JH, Dawant BM et al (2008) Clinical validation of percutaneous cochlear implant surgery: initial report. Laryngoscope 118(6): 1031–1039. doi:10.1097/MLG.0b013e31816b309e

    Article  PubMed  Google Scholar 

  29. Warren FM, Balachandran R, Fitzpatrick JM et al (2007) Percutaneous cochlear access using bone-mounted, customized drill guides: demonstration of concept in vitro. Otol Neurotol 28(3): 325–329. doi:10.1097/01.mao.0000253287.86737.2e

    Article  PubMed  Google Scholar 

  30. Hussong A, Rau T, Eilers H et al (2008) Conception and design of an automated insertion tool for cochlear implants. In: Proceedings of the 30th annual international conference of the IEEE engineering in medicine and biology society, EMBC, Vancouver, Canada, pp 5593–5596

  31. Cohen LT, Saunders E, Clark GM (2001) Psychophysics of a prototype peri-modiolar cochlear implant electrode array. Hear Res 155(1–2): 63–81. doi:10.1016/S0378-5955(01)00248-9

    Article  CAS  PubMed  Google Scholar 

  32. Roland JT (2005) A model for cochlear implant electrode insertion and force evaluation: results with a new electrode design and insertion technique. Laryngoscope 115(8): 1325–1339. doi:10.1097/01.mlg.0000167993.05007.35

    Article  PubMed  Google Scholar 

  33. Lenarz T (2006) Cochlear Implantation. The Hannover Guideline. Endo-Press, Tuttlingen

    Google Scholar 

  34. Fraysse B, Macías AR, Sterkers O et al (2006) Residual hearing conservation and electroacoustic stimulation with the nucleus 24 contour advance cochlear implant. Otol Neurotol 27(5): 624–633. doi:10.1097/01.mao.0000226289.04048.0f

    Article  PubMed  Google Scholar 

  35. Lehnhardt E (1993) Intracochlear placement of cochlear implant electrodes in soft surgery technique. HNO 41(7): 356–359

    CAS  PubMed  Google Scholar 

  36. Balkany TJ, Connell SS, Hodges AV et al (2006) Conservation of residual acoustic hearing after cochlear implantation. Otol Neurotol 27(8): 1083–1088. doi:10.1097/01.mao.0000244355.34577.85

    Article  PubMed  Google Scholar 

  37. Di Nardo W, Cantore I, Cianfrone F et al (2007) Residual hearing thresholds in cochlear implantation and reimplantation. Audiol Neurootol 12: 165–169. doi:10.1159/000099019

    Article  PubMed  Google Scholar 

  38. Gstoettner WK, Helbig S, Maier N et al (2006) Ipsilateral electric acoustic stimulation of the auditory system: results of long-term hearing preservation. Audiol Neurootol 11(Suppl 1): 49–56. doi:10.1159/000095614

    PubMed  Google Scholar 

  39. Adunka OF, Kiefer J, Unkelbach MH et al (2004) Development and evaluation of an improved cochlear implant electrode design for electric acoustic stimulation. Laryngoscope 114(7): 1237–1241. doi:10.1097/00005537-200407000-00018

    Article  PubMed  Google Scholar 

  40. Todd CA, Naghdy F, Svehla M (2007) Force application during cochlear implant insertion: An analysis for improvement of surgeon technique. IEEE Biomed Eng 4(7): 1247–1255. doi:10.1109/TBME.2007.891937

    Article  Google Scholar 

  41. Rau TS, Hussong A Leinung M et al (2007) Erfassung des Krümmungsverhaltens von CI-Elektroden für die robotergestützte, minimal-traumatische Insertion. In: Proceedings of the 6th annual conference of CURAC, Karlsruhe, Germany

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Thomas S. Rau.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Rau, T.S., Hussong, A., Leinung, M. et al. Automated insertion of preformed cochlear implant electrodes: evaluation of curling behaviour and insertion forces on an artificial cochlear model. Int J CARS 5, 173–181 (2010). https://doi.org/10.1007/s11548-009-0299-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11548-009-0299-9

Keywords

Navigation