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Abstract .

Purpose: The structure of fiber tracts in DT-MRI data presents a challenging problem for
visualization and analysis. We derive visualization of such traces from a local coherence
measure and achieve much improved visual segmentation.

Methods: We introduce a coherence measure defined for fiber tracts. This quantitative as-
sessment is based on infinitesimal deviations of neighboring tracts and allows identification
and segmentation of coherent fiber regions. We use a hardware-accelerated implementation
to achieve interactive visualization on slices and provide several approaches to visualize co-
herence information. Furthermore, we enhance existing techniques by combining them with
coherence.

Results: We demonstrate our method on both a canine heart, where the myocardial struc-
ture is visualized, and a human brain, where we achieve detailed visualization of major and
minor fiber bundles in a quality similar to and exceeding fiber clustering approaches.
Conclusions: Our approach allows detailed and fast visualization of important anatomical
structures in DT-MRI data sets.

Keywords Diffusion Tensor Imaging - Tractography - Coherent Structures

1 Introduction

The abstract mathematical concept of tensors remains a challenging field of study in scien-
tific visualization. Visual representation of a tensor can be achieved by reducing its multidi-
mensional information to simple, understandable geometric primitives in three-dimensional
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space. While these so-called fensor glyphs are powerful in conveying local properties of a
tensor-valued data set [Kin04], global insight into its structure independent of the field of
application, is most effectively achieved through line primitives, which constitute the most
prominent tool to visualize tensor data in a continuous way. Tensor lines and hyperstream-
lines [VZKLO06], which represent curves that are everywhere tangent to a tensor eigenvector
field, have proven to be a suitable means to globally visualize tensor fields in a number
of application domains including material sciences and medical visualization. In Diffusion
Tensor Imaging (DTI) [BML94] in particular, it is known that eigenvectors of reconstructed
diffusion tensors align with the underlying local fibrous tissue structure. Its analysis pro-
vides insight into the connectivity of the brain white matter. The ability of DTI to acquire
this information in vivo makes it a valuable tool to neuroscientists and neurosurgeons.

While single tensor lines can represent only a small subset of a considered data set, dis-
playing large numbers of these lines suffers from visibility and occlusion problems, which
significantly limits the effectiveness of visualization of this approach. Therefore, various
methods have been proposed to reduce visual occlusion by placing a certain number of
line representatives or by displaying boundary surfaces of tensor line bundles that exhibit
a similar behavior. Their construction usually involves complex optimization or clustering
algorithms (e.g, [ESM*05,STS07]), which remain computationally challenging. In contrast,
an effective strategy to produce more abstract means to capture and represent tensor data
and create a high-level representation usually consists of emphasizing regions where the be-
havior of lines changes. These regions are of primary importance in the analysis of the data.
In medical imaging in particular, the seminal work by Basser et al. [BP*00] have demon-
strated the anatomical significance of the structures derived from tensor lines in terms of
fiber tracts. In brain white matter where the connectivity of different brain areas is a vital
field of research, regions where the local geometry of tracks changes rapidly are structurally
meaningful since they indicate areas where at least two neural fiber bundles touch, join, or
separate. Similarly, diffusion-weighted scans of muscles support in vivo structural analy-
sis even of small-animal skeletal muscle. Therefore, they can be used to analyze complex
muscular structures such as found in the heart.

In this context, we propose a novel visualization method that combines dense fiber inte-
gration with local analysis of the coherence of the resulting fiber set to yield a structural pic-
ture of DT-MRI data sets. Specifically, the algorithm we propose effectively identifies each
data set location with the fiber tract passing through it, and quantifies a coherence measure
on the fiber tracts passing through a small neighborhood. We define this measure in terms
of the deviation of fibers over a finite distance. It follows from this construction that regions
of high cohesiveness contained in fibrous tissue corresponds to a set of points that exhibit
a strong coherence with their neighbors, while the boundaries that separate such structures
are associated with points where the coherence is small. An important feature of our method
is the continuous nature of the coherence measure; this characteristic makes proper mod-
eling of gradual transitions between differing fiber behaviors possible. This property is of
particular importance to study the subtle changes in the tissue structure, such as, e.g., those
found in the myocardium. Furthermore, because our method quantifies fiber coherence with
respect to the geometric similarity of tensor lines over a certain length, this length param-
eter is naturally contained in our approach and provides a intuitive notion of scale in the
assessment of coherence. Remark that the coherence measure presented here is not specific
to medical visualization but can be applied in the general context of tensor field analysis.

In Section 2, we review previous work in tensor visualization, with a strong focus on
techniques dedicated to the characterization of structures in tensor fields. Section 3 intro-
duces the theoretical foundations underlying the proposed fiber measure, and discusses de-



tails of our implementation. In Section 4, we examine a number of visualization approaches
derived from the obtained scalar coherence information and explain how it can be used to
enhance commonly used visualization techniques. Specific results for the case of DTI visu-
alization are discussed in Section 6, and we demonstrate the ability of our technique to char-
acterize different types of structural properties in various kinds of tissue. Finally, Section 7
concludes on the presented material and provides possible directions for future research.

2 Related Work

Visualization of tensor-valued data sets using tensor lines can be traced back to the visual-
ization of vector fields and flows using so-called integral curves that model the trajectories
of particles moving through the field. The recently introduced notions of Finite-Time Lya-
punov Exponents (FTLE) and Lagrangian Coherent Structures (LCS) [Hal01,LSMO06] have
been applied to visualize the coherence of motion among neighboring particles [GGTHO7,
SPO7]). These Lagrangian visualization approaches locally express the change of the parti-
cle trajectory with the variation of the initial position, and regions of locally high variation
are identified as coherent structures that represent the driving constituents of a flow. The ten-
sor visualization approach we present is based on similar concepts applied to tensor lines.

The quantification of coherence of neighboring fibers in diffusion tensor data, specif-
ically pertaining to the human brain, has been attempted by several authors [ESM*05,
MVvWO05,QRO*08]. Typically, fiber tracts that remain close to each other and have similar
behavior are clustered and classified to belong to a common bundle. We do not compute a
clustering but rather highlight the Lagrangian scalar field directly, as it provies additional
information.

Especially in diffusion tensor data, these coherent structures possess a meaning on the
connectivity of the underlying structure and provide valuable information for further eval-
uation of the data. These concepts have strongly influenced our idea of detecting coherent
structures in tensor fields. In the following, we describe the theoretical considerations un-
derlying our approach.

3 Tensor Line Coherence

Before we describe our method, we briefly revisit the concept of tensor lines.

3.1 Tensor Lines

Tensor lines were originally introduced by Dickenson et al. [Dic89] and later applied to
the topological analysis of tensor fields [HLL97,TS04] and the segmentation of Diffusion-
Tensor MRI data [ESM*05]. A given field of symmetric tensors T, represented by n X n-
matrices induces a local eigen decomposition of the form 7' (x) = B(x)” D(x)B(x) for every
x in the domain of definition of 7. Here, B(x) represents an orthogonal basis transform
and D is the diagonal matrix of non-negative eigenvalues A; ordered by magnitude, i.e.,
Ai(x) > ... > Ay(x). If A; # A for i # j, this ordering is strict; in this case x is called a
regular point, and degenerate otherwise.

Choosing j € {1,...,n}, the decomposition gives rise to a tensor line @, (¢) as the
uniquely defined curve that passes through x and is everywhere tangential to the j-th eigen-



vector e;(x) corresponding to 4;(x), i.e.,

%(p)C = =£ej(x). €))
Hence, tensor lines are integral curves that are naturally parameterized according to arc
length. In the case n = 3, the three possible tensor line types are called major, medium,
and minor tensor lines depending on the choice of j. A variety of numerical schemes exist
for approximations of tensor lines in symmetric tensor fields, typically based on numerical
integration schemes such as the explicit Euler scheme or the family of Runge-Kutta meth-
ods [HNWO93]. Remark that the orientation of ¢, is not uniquely determined by Eq. 1. This
must be taken into account when working with such lines.

3.2 Coherence Measure

The central idea of our approach is a local coherence measure that describes the similarity
of tensor lines passing through a small neighborhood U around a regular point x. We may
assume in the following that all the tensor lines passing through U can be consistently ori-
ented. For 7 > 0, we denote by D¢’ the derivative of ¢,(¢) with respect to x. Essentially, Dg?.
describes the variation of @, (z) as x varies slightly. Intuitively, the spectral matrix norm

D@2 := \/ Amax (D‘P)[cTD‘P})

pertaining to the maximal eigenvalue of D@ can be interpreted as the maximum distance
after a time ¢ that any ¢, can move away from @, if x and y are initially arbitrarily close.
Fixing T > 0, we now define the local tensor line coherence measure C by virtue of

— 12
Cr(x):=_max_ |IDgla. &)
Essentially, Cr (x) measures the maximum distance that a tensor line @, passing through any
y arbitrarily close to x can move away from ¢, over its parameter interval [—T,T]. If this
maximum distance (and hence Cr) is small, neighboring tensor lines stay closely together.
On the other hand, a large Cr indicates significant divergence along the path.

3.3 Numerical Approximation

In the interest of simplified notation, we limit our description here to a two-dimensional
regularly spaced setting. However, equivalent constructions are possible in any spatial di-
mension and on most types of discrete domains.

Let T > 0 and assume a discrete domain with points x; j := (i-h, j- k) with A > 0 and
i,j € {0,...,N}. Furthermore, let M > 0 an integer defining a time discretization ™ :=
](/TM withm € {—M,...,M}. Using numerical integration, we define the discrete tensor line
points

p;-’_"j = (Pxi‘j ([m)
as the discrete representation of the tensor lines passing through the grid points x; ;. We find
the discrete approximation

~ m
Cr(xi,) = max |IDg;
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of Cr (Eq. 2), where D¢!" is numerically approximated from the pyj> .g., using finite
differences. Note the discrete tensor lines passing through the grid points participating in the
derivative approximation must be oriented consistently. We now examine the visualization
of DTI data sets using the above coherence measure.

4 Visualization

The point-wise coherence measure defined in the previous section, applied to the entire
domain of a data set, gives rise to a scalar field. Hence, typical scalar fields visualization
methods are applicable. For a fast, exploratory inspection of such fields, pseudo-colored
sweeping planes have proven to be a valuable, interactive tool. We have considered different
types of color coding: Figure 3 (left) depicts an anteroposterior slice through a brain data set
where the coherence measure is represented as a grayscale color map. The visualization can
be further augmented by superimposing an anisotropy-scaled rgb color map that is prevalent
in DTT visualization [KWHOO]. The typical anatomical structures can be identified while
additional information is provided by the coherence visualization (middle image). Fiber
endpoint information can be used as an alternative color coding that enhances the structural
view on the data. By mapping the direction between the endpoints using % to (r,g,b)
color components, generally, similar colors are assigned to areas that have similar behavior
(right image). Figure 2 illustrates some of these visualization approaches on a DTI data set
of a canine heart.

Regarding the three-dimensional context of a data set, the main structural components
of the coherence field can be visualized using isosurfaces or volume rendering. Since low
coherence values correspond to diverging fiber bundles, corresponding isosurfaces or vol-
ume renderings emphasizing such regions illustrate boundaries between coherent regions.
Conversely, areas of similar behavior that are representative of the major line structures may
be visualized by selecting regions of high coherence values.

Furthermore, we propose to enhance typical tensor line visualization through coherence
information. Here, we make use of the coherency measure as a transparency mask for the
rendered lines. This reduces in a stronger depiction of coherent structures while reducing the
visual impact of regions of incoherent fiber behavior (cf. Figure 5). The use of illuminated
lines [MPSS05] emphasizes the three-dimensional structure of the data and improves the
perception of the topological relationships among lines, especially when interaction with
the data is desired and possible. Furthermore, adding volumetric coherence information as
discussed above provides spatial context to the fiber visualization.

In the next section, we focus on implementation aspects of coherence-based DTI visu-
alization.

5 Implementation and Performance

The computation of the coherence measure for a given DTI data set is built on the obser-
vation of a large number of fiber traces traversing the domain of definition. Even for small
data sets, a regular sampling of the data set domain can result in the computation of a large
number of fiber traces. The resulting computational effort is significant. This problem is
further aggravated by the observation that important structures in tensor fields often have
sub-voxel resolution being a consequence of interpolation. To resolve these structures and
gain a proper interpretation of the data set, we have found it beneficial to evaluate coherency



information with resolution exceeding that of the underlying data set. This super-sampling
further increases the computational effort of our method.

We have addressed this problem in the following way: We make use of Graphics Pro-
cessing Units (GPUs) to accelerate the necessary computations. Tensor line integration is a
massively parallel process; there is no interdependency between lines emanating from differ-
ent points and hence maps ideally to the increased computational parallelism and bandwidth
available from modern GPUs. Our GPU implementation of the coherence measure is based
on central finite differences. For each point at which the coherence measure must be evalu-
ated, the six neighboring fiber traces corresponding to the finite difference stencil are com-
puted and oriented consistently. Here, all fiber traces are advanced one step simultaneously,
and after each step, Dq)’m is evaluated and C7 is updated according to Eq. 3. This incremen-
tal algorithm permits us to approximate the coherence measure during the integration and
obviates the need to store the fiber traces.

Practically, it is not always possible to advance fibers to the maximum length over which
the coherence measure is to be evaluated. Fiber traces cannot continue over domain bound-
aries or part degenerate points in the data set. Furthermore, it is common practice to termi-
nate fiber integration if the fractional anisotropy — an indirect indicator of the presence of
white matter — falls below a specified threshold (cf., e.g., [Kin04]). In all these cases, we
evaluate the coherence measure only over the interval on which all fibers of the derivative
stencil exist.

Our implementation is straightforward since we do not expend effort to reuse fiber traces
among neighboring evaluation locations. We have found that the storage and bandwidth
requirements of a more elaborate implementation that computes each fiber trace exactly once
are excessive in the face of the super-sampling discussed above. Hence, in our experiments,
such an implementation did not perform faster than the naive implementation presented here.

To document the performance that can be achieved using the presented approach and
exmine its suitability for interactive visualization, we have measured timings obtained on
two data sets. All timings were obtained on commodity PC (2.0GHz Intel Core 2 Duo with
2GB RAM, GeForce 8800GTX, 768MB video RAM) and are shown in Table 1. The mea-
sured computation times include all fiber integrations and evaluation of the coherence field
for different resolutions of the coherence map on both slices and volumes. A further discus-
sion of the data sets is given in the next section 6.

Cr resolution ‘ Data Set Time ‘ Data Set Time
512 x 512 Human Brain ~ 10ms Dog Heart
1024 x 1024 | (93x116x93)  20ms | (64x52x41)
5123 10s 2.4s

Fig. 1 Evaluation timings of our coherency measure implementation for two DT-MRI data sets.

For the slice-based visualization mode (cf. Fig. 3), a sweep is performed through the
data set of color-coded slices using an advection approach [WKL99] at interactive frame
rates up to 10242 pixel resolution as is shown from Table 1. For inspecting single slices
and changing the color parameters, the lines are not recomputed and, therefore, the frame
rates for the visualization step is much higher. All other changes that do not affect the line
integration but the coherence calculation are performed at the same frame rate.



Fig. 2 Slice through a diffusion-weighted MRI scan of a canine heart data set: Even though the data is noisy
and the resolution low, grayscale coherence map visualization (left) and coherence map colored by directional
information clearly show the main structures of the data. The muscle fibers are organized in layers that differ
in their fiber direction. Whereas the transition is gradual within a linear interpolated voxel, our approach
provides sub-voxel accuracy of the barrier.. Whereas previous methods ([PVSR06]) have already been able
to extract this behavior, our method does not rely on abrupt changes within a voxel but uses global information
of line behavior. Therefore, it is superior to previously presented approaches that cannot extract results on a
sub-voxel scale.

6 Results

We have applied our method to two DT-MRI data sets — a diffusion-weighted magnetic
resonance scan of a canine heart, and a diffusion tensor image set of the human brain.

Canine Heart The MRI scan of the canine heart has been sampled over a regular grid with
resolution 64 x52x41 and with anisotropic cells of size 1.4x1.4x2.0mm?>. It was acquired
with the specific intent to analyze the heart’s muscular structure that is visible in the DTI
images as the major tensor eigenvectors are aligned to the underlying fiber structure.

Two slice visualizations with and without additional coloring are shown in Figure 2.
As the data contains a hard mask, boundary artifacts are observed in the upper part of the
pictures. Nevertheless, the main apparent structures in these images are two trisector-like
points, one at the upper connection between atrium and the ventricle, and the other near the
bottom. The separating wall contains one major line separating the fibers going around the
atrium from those following the left ventricle. More interesting is the wedge-like point near
the bottom: It splits the fibers coming from the atrium in two parts. The outer layer passes
(as seen in the red color coding) from left to right, while the inner layer of fibers (blue) is
oriented orthogonally to the slice.

Human Brain We applied our algorithm to
a DTI data set describing a human brain. It
was generated from a healthy volunteer us-
ing a three-Tesla Siemens Trio MRI scanner.
60 diffusion weighted images were acquired
using three times averaging and 21 baseline
images. The data was converted to a second-
order tensor representation using linear least-
squares fit [BML94]. The complete measure-
ment took about 20 minutes with an in-slice

Fig. 4 A combination of volume rendering of
tensor coherence measure and coherence-based
seeding of tensor lines. Many small-scale struc-
tures are visible, such as the region of low coher-
ence between the corpus callosum (fibers coming
out of the picture) and the singuli (fibers going
left-right above the corpus callosum).



Fig. 3 GPU-based visualization of slices. The coherence map (left) is drawn as an overlay to a color map
in the middle and right picture. Black lines mark low coherence while the white areas contain coherent
structures, which are colored by their direction in the middle and right pictures. In the middle picture, the
medical fractional anisotropy-rgb color map is used to show the direction and fractional anisotropy at the
seed point. In the right picture, the areas of similar behavior are enforced using an endpoint-based directional
color map to provide a segmentation-like color coding. The selected slice, its orientation, and the color coding
can be changed interactively.

resolution of 128 x 128 voxel and 72 slices on
a 1.7x1.7x1.7 mm? grid. In contrast to the
dog heart, the noise in the white matter part is
low, but the fiber structure is more complex.

Figure 3 shows three different visualiza-
tions of fiber coherence on a central slice of
the brain, using purely the coherence mea-
sure (left), coloring by anisotropy (middle),
and coloring by endpoint difference. The co-
herence measure was evaluated using a sampling resolution of 10242. Dominant structures
such as the corpus callosum and the pyramidal tract are clearly identified, and a detailed
visual segmentation of the fiber tracts is observed even in regions that have almost uniquely
local directional information. Both forceps major and minor are segmented in different ar-
eas depending on the fiber’s global behavior. In the right image, the distinction between
the tapetum (purple), posterior corona radiata (green) and superior longitudinal fasciculus
(blue) is visible, similar to Fig. 10 in Kindlmann et al. [KTWO07] with the difference that the
coherence visualization produced by our scheme exhibits significantly reduced noise and
identifies cleaner boundaries.

For fully three-dimensional analysis, we use the coherence field as a guide for the seed-
ing and filtering of tensor lines. A set of ca. 14 000 illuminated tensor lines uniformly seeded
inside the brain volume is shown in Figure 5 (left). The right image in the same figure shows
the same set of tensor lines, where the transparency of the line is derived from the coherence
of the regions that the fibers traverse such that more coherent regions appear more opaque.
This effectively achieves a filtering of lines in noisy areas and enforces a visual emphasis
of the global structure of the field. In addition to the major fiber bundles, minor bundles
leaving the pyramidal tract towards the cerebral cortex can be distinguished. A combination
of opacity-modulated fiber tracts with volume rendering of coherence information for ad-



Fig. 5 Seeding and transparency mapping of tensor lines depending on coherence (right) versus an unfiltered
version of the same line set (left). The right image only shows the most dominant and coherent fiber bundles.

ditional context is shown in Figure 4. Whereas individual fibers that can not be associated
with fiber bundles vanish, even fine-grained structures at sub-voxel resolution, such as the
singuli, remain visible.

The brain data set presents a challenge with regard to visualization, as it exhibits a rela-
tively large amount of noise and many small-scale structures. Coherence-based visualization
successfully reveals the main structures of the data and boundaries of areas of different be-
havior can be clearly identified.

7 Discussion

The visualization method for fiber traces in DTI data sets presented here was inspired by two
other successful visualization methodologies, namely coherent structures in flow fields and
fiber clustering. They share the common idea of describing a data set through information
defined by integral lines. Our approach uses a coherence measurement as a means to identify
coherent, similarly behaving, line structures. Therefore, the visualizations derived from fiber
coherence images are a direct representation of clustering distance measures on lines in a
neighborhood, but it supersedes clustering because there is no need for an explicit and dis-
crete grouping of lines. Therefore, floating point values can be used to represent similarity
and due to the higher efficiency, it is possible to use far more lines for the calculation, which
results in a higher resolution and a detection of finer structures compared to most clustering
approaches. We have demonstrated that those measures can be used to effectively visualize
global structures in DTI data and provide the user with a representation that enables a visual
segmentation. Furthermore, combination with isosurfaces and volume rendering provides
coherency information in spatial context for three-dimensional visualizations. This is an im-
provement over previous clustering, segmentation and visualization approaches that require
extensive pre-computation. We have described a robust algorithm that leverages commodity
GPUs to quickly measure coherency information on DTI data sets and have shown that it
facilitates interactive visualizations. Furthermore, since it behaves smoothly, the coherency
measure is not strongly influenced by noise such as, for example, topological methods. In
addition to the direct interpretation of the coherence value and its similarity to clustering ap-



10

proaches, it can be used as a fully automatic approach for tensor line seeding or filtering of
lines to provide appealing three-dimensional visualizations that significantly reduce clutter.

Several open questions remain as avenues for future research. Firstly, we would like to
investigate the connection between our coherence measure and topological methods. Topo-
logical methods describe the coherence of fibers in an asymptotic sense, while we only
measure it over a finite length interval. Secondly, we envision an automated extraction of
boundaries between coherent fiber bundles by means of ridge extraction in the coherence
field. Finally, we note that the scope of our work is not limited to the visualization of tensor
data from medical applications, and we have already taken first steps towards applying it
to other application domains. Thirdly, as our current DTI data sets are provided by neuro-
scientists focusing on brain connectivity, an additional study involving neurosurgeons and
radiologists has to reveal possible applications for clinical data.
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