Skip to main content

Advertisement

Log in

Clinical evaluation of angiographic multiple-view 3D reconstruction

  • Original Article
  • Published:
International Journal of Computer Assisted Radiology and Surgery Aims and scope Submit manuscript

Abstract

Purpose

Endovascular treatment of stroke, a leading cause of death in the United States, involves guidance of devices to the intervention site often through tortuous vessels. Typically, these interventions are performed under two- dimensional (2D) fluoroscopy. To facilitate these procedures, we developed and previously presented a multiple-view self-calibration method involving two steps: (1) calibration of the imaging geometry, and (2) reconstruction of the 3D vessel centerline. Only those 2D angiograms obtained during the procedure are used for reconstruction. In this manuscript, we evaluate this technique on a large set (117 cases) of clinical data obtained over a 12-month period.

Methods

We evaluated the technique using (1) the RMS difference between the calculated 3D centerlines and the average centerline (before and after application of our method), (2) the difference between the projected 3D centerlines and the 2D indicated centerlines, (3) the translations and rotations calculated by our technique, and (4) intra- and inter-user variations.

Results

Our approach (1) reduces the RMS 3D differences by a factor of 10, (2) increases the number of projected 3D centerline points lying within 1 mm of the indicated 2D centerline points by over a factor of 2 (from 28 to 71%), (3) provides an assessment of the variations in the gantry geometry as provided by the imaging system, and (4) is insensitive to user variations in indication (<1 mm differences in 3D are seen).

Conclusions

These results indicate that this technique will provide more reliable vessel centerlines in the clinical setting without requiring additional acquisitions or increasing dose to the patient.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Kochanek KD, Murphy SL, Anderson RN, Scott C (2004) Deaths: final data for 2002. Natl Vital Stat Rep 53(5): 1–116

    PubMed  Google Scholar 

  2. Potel MJ, Rudin JM, Mackay SA, Aisen AM, Al-Sadir J, Sayre RE (1983) Methods for evaluating cardiac wall motion in three dimensions using bifurcation points of the coronary arterial tree. Invest Radiol 18(1): 47–57. doi:10.1097/00004424-198301000-00009

    Article  PubMed  CAS  Google Scholar 

  3. Parker D, Pope D, Van Bree R, Marshall H (1987) Three- dimensional reconstruction of moving arterial beds from digital subtraction angiography. Comput Biomed Res 20: 166–185. doi:10.1016/0010-4809(87)90043-7

    Article  PubMed  CAS  Google Scholar 

  4. Faugeras O, Luong Q (2001) The geometry of multiple images. The MIT Press, Cambridge

    Google Scholar 

  5. Trucco E, Verri A (1998) Introductory techniques for 3-D computer vision. Prentice Hall, Englewood Cliffs

    Google Scholar 

  6. Wollschläger H, Lee P, Zeiher A, Solzbach U, Bonzel T (1986) Just: mathematical tools for spatial computations with biplane isocentric X-ray equipment. Biomed Tech 31: 101–106

    Article  Google Scholar 

  7. Metz CE, Fencil LE (1989) Determination of three-dimensional structure in biplane radiography without prior knowledge of the relationship between the two views: theory. Med Phys 16(1): 45–51. doi:10.1118/1.596401

    Article  PubMed  CAS  Google Scholar 

  8. Wahle A, Wellnhofer E, Mugaragu I, Sauer HU, Oswald H, Fleck E (1995) Assessment of diffuse coronary artery disease by quantitative analysis of coronary morphology based upon 3D reconstruction from biplane angiograms. IEEE Trans Med Imaging 14: 230–241. doi:10.1109/42.387704

    Article  PubMed  CAS  Google Scholar 

  9. Wahle A (1997) Präzise dreidimensionale Rekonstruktion von Gefässystemen aus biplanen angiographischen Projektionen und deren klinische Anwendung. No. 152 in Fortschritt-Berichte, Reihe Biotechnik (17). VDI Verlag, Düsseldorf (in German)

  10. Hoffmann KR, Metz CE, Chen S (1995) Determination of 3D imaging geometry and object configurations from two biplane views: an enhancement of the Metz-Fencil technique. Med Phys 22: 1219–1227. doi:10.1118/1.597559

    Article  PubMed  CAS  Google Scholar 

  11. Bullitt E, Soltys M, Chen J, Rosenman J, Pizer SM (1996) Three-dimensional reconstruction of intracranial vessels from biplane projection views. J Neurosci Methods 66(1): 13–22. doi:10.1016/0165-0270(95)00124-7

    Article  PubMed  CAS  Google Scholar 

  12. Henri CJ, Peters TM (1996) Three dimensional reconstruction of vascular trees. Theory and methodology. Med Phys 23: 197–204. doi:10.1118/1.597704

    CAS  Google Scholar 

  13. Close R, Morioka C, Whiting JS (1996) Automatic correction of biplane projection imaging geometry. Med Phys 23(1): 133–139. doi:10.1118/1.597789

    Article  PubMed  CAS  Google Scholar 

  14. Chen SYJ, Metz CE (1997) Improved determination of biplane imaging geometry from two projection images and its application to three-dimensional reconstruction of coronary arterial trees. Med Phys 24: 633–654. doi:10.1118/1.598129

    Article  PubMed  CAS  Google Scholar 

  15. Luong Q, Faugeras O (1997) Self-calibration of a moving camera from point correspondences and fundamental matrices. Int J Comput Vis 22: 261–289. doi:10.1023/A:1007982716991

    Article  Google Scholar 

  16. Hoffmann KR, Sen A, Lan L, Chua K, Esthappen J, Mazzucco M (2000) A system for determination of 3D vessel tree centerlines from biplane images. Int J Card Imaging 16: 315–330. doi:10.1023/A:1026528209003

    Article  PubMed  CAS  Google Scholar 

  17. Sprague K, Drangova M, Lehmann G, Slomka P, Levin D, Chow B, deKemp R (2006) Coronary x-ray angiographic reconstruction and image orientation. Med Phys 33: 707–718. doi:10.1118/1.2143352

    Article  PubMed  Google Scholar 

  18. Noel PB, Hoffmann KR, Kasodekar S et al (2006) Optimization of three-dimensional angiographic data obtained by self-calibration of multiview imaging. Med Phys 33(10): 3901. doi:10.1118/1.2350705

    Article  PubMed  Google Scholar 

  19. Olsson DM, Nelson LS (1975) The Nelder-Mead Simplex procedure for function minimization. Technometrics 17: 45–51. doi:10.2307/1267998

    Article  Google Scholar 

  20. Noel PB, Hoffmann KR, Kasodekar S, Schafer S (2007) Clinical multiple-view reconstruction of the carotid artery from endovascular interventions, CARS 2007 Computer Assisted Radiology and Surgery. 21th International Congress and Exhibition 2: 66–81

    Google Scholar 

  21. Hoffmann KR, Nazareth DP, Miskolczi L, Gopal A, Wang Z, Rudin S, Bednarek D (2002) Vessel size measurements in angiograms: a comparison of automated techniques. Med Phys 29: 1622–1633. doi:10.1118/1.1488603

    Article  PubMed  Google Scholar 

  22. Gopal A, Hoffmann KR, Rudin S, Bednarek DR (2002) Reconstruction of asymmetric vessel Lumen from two views. Proc SPIE 4684: 257–265. doi:10.1117/12.467165

    Article  Google Scholar 

  23. Fujita H, Doi K, Fencil LE, Chua KG (1987) Computerized determination of vessel sizes in digital subtraction angiography. Med Phys 14(4): 549–556. doi:10.1118/1.596066

    Article  PubMed  CAS  Google Scholar 

  24. Schoeneman PH (1966) A generalized solution of the orthogonal Procrustes problem. Psychometrika 31: 1–10. doi:10.1007/BF02289451

    Article  Google Scholar 

  25. Schoeneman PH, Carroll RM (1970) Fitting one matrix to another under choice of a central dilation and a rigid motion. Psychometrika 35: 245–254. doi:10.1007/BF02291266

    Article  Google Scholar 

  26. Schafer S, Singh V, Hoffmann KR, Noël PB, Xu J (2007) Planning image-guided endovascular interventions: guidewire simulations using shortest path algorithms. SPIE Medical Imaging (MI02)

  27. Bullitt E, Muller KE, Jung I, Lin W (2005) Analyzing attributes of vessel populations. Med Image Anal 9(1): 39–49. doi:10.1016/j.media.2004.06.024

    Article  PubMed  Google Scholar 

  28. Hoffmann KR, Rudin S, Meng H, Hopkins LN, Guterman L, Levy E (2005) Three-dimensional analysis of the cerebral vasculature: concepts and applications. In: Armato SG, Brown MS (eds) Multidimensional image processing, analysis, and display. Radiological Society of North America Publishing, Oak Brook, pp 173–184

    Google Scholar 

  29. Schafer S, Hoffmann KR, Walczak AM, Noël PB et al (2007) Minimal invasive endovascular interventions: pre- and peri-procedural assessment of point-specific vessel tortuousity. CARS 2007 Computer Assisted Radiology and Surgery, 21th International Congress and Exhibition 2: 483–507

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Peter B. Noël.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Noël, P.B., Hoffmann, K.R., Kasodekar, S. et al. Clinical evaluation of angiographic multiple-view 3D reconstruction. Int J CARS 4, 497–508 (2009). https://doi.org/10.1007/s11548-009-0361-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11548-009-0361-7

Keywords

Navigation