Skip to main content

Advertisement

Log in

Optimization of acquisition trajectories for 3D rotational coronary venography

  • Review Article
  • Published:
International Journal of Computer Assisted Radiology and Surgery Aims and scope Submit manuscript

Abstract

Objective

Rotational coronary X-ray imaging on C-arm systems provides a multitude of diagnostic projections from the vascular tree with a single contrast agent bolus. The acquisition trajectory is typically limited to a circular arc with a fixed caudo-cranial angulation. This may cause sub- optimal projection directions for specific vessel segments for all acquired views, e.g., those segments orthogonal to the axis of rotation. In this paper, a method is presented to calculate a patient-independent acquisition trajectory with respect to vessel foreshortening and overlap for multiple vessel segments of the coronary tree. This method can be applied to artery as well as vein anatomy.

Methods

Rotational coronary venograms of 14 patients have been used to generate three-dimensional mesh representations with a semi-automatic two view modeling algorithm. The venous tree is divided into seven different vessel segments. Foreshortening and overlap of every segment are calculated and combined for all patients in a measure called obstruction value. The weighted obstruction values of all vessel segments define a cost function for the entire two-dimensional angular range of the C-arm system. Viterbi’s algorithm is used to calculate an optimal trajectory with respect to this cost function. The method is validated by leave-one-out cross-validation on the 14 rotational venography data sets and on simulated venograms of a segmented computed tomography (CT) data set. Projection images with a foreshortening value below 10% and overlap below 20% are rated ‘optimal’.

Results

In 12 (85.7%) data sets, 43% more optimal images were acquired using the presented method compared to the standard circular arc trajectory. As well, in 13 (92.8%) data sets 38% more vessel segments can be optimally visualized in the acquired images. The test on the CT data set showed that the resulting average root-mean-square error of the extracted centerline points of the segmented CT data set compared to the error based on the views from the circular arc was reduced from 2.52 to 1.55 mm.

Conclusion

In a first test, the method proved to deliver improved image quality by reducing foreshortening and overlap of vessel segments and may therefore also improve the centerline extraction accuracy of the semi-automatic two view modeling method.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Jongbloed MR, Lamb HJ, Bax JJ, Schuijf JD, de Roos A, van der Wall EE, Schalij MJ (2005) Noninvasive visualization of the cardiac venous system using multislice computed tomography. J Am Coll Cardiol 45: 749–753

    Article  PubMed  Google Scholar 

  2. Ghersin E, Litmanovich D, Dragu R, Rispler S, Lessick J, Ofer A, Brook OR, Gruberg L, Beyar R, Engel A (2005) 16-MDCT coronary angiography versus invasive coronary angiography in acute chest pain syndrome: A blinded prospective study. Am J Roentgenol 186: 177–184

    Article  Google Scholar 

  3. Watanabe Y, Nagayama M, Amoh Y, Fujii M, Fuku Y, Okumura A, van Cauteren M, Stuber M, Dodo Y (2002) High-resolution selective three-dimensional magnetic resonance coronary angiography with navigator-echo technique: Segment-by-segment evaluation of coronary artery stenosis. J Magn Reson Imaging 16: 238–245

    Article  PubMed  Google Scholar 

  4. Kefer J, Coche E, Legros G, Pasquet A, Grandin C, van Beers BE, Vanoverschelde JL, Gerber BL (2005) Head-to-head comparison of three-dimensional navigator-gated magnetic resonance imaging and 16-slice computed tomography to detect coronary artery stenosis in patients. J Am Coll Cardiol 46: 92–100

    Article  PubMed  Google Scholar 

  5. Blendea D, Mansour M, Shah RV, Chung J, Nandigam V, Heist EK, Mela T, Reddy VY, Manzke R, McPherson CA, Ruskin JN, Singh JP (2007) Usefulness of high-speed rotational coronary venous angiography during cardiac resynchronization therapy. Am J Cardiol 100: 1561–1565

    Article  PubMed  Google Scholar 

  6. Baim DS, Grossman W (2000) Coronary angiography. In: Baim DS, Grossman W (eds) Grossman’s cardiac catheterization, angiography, and intervention. Williams and Wilkins, Lippincott, pp 211–270

    Google Scholar 

  7. Zir LM, Miller SW, Dinsmore RE, Gilbert JP, Harthorne JW (1976) Interobserver variability in coronary angiography. Am Heart Assoc 53: 627–632

    CAS  Google Scholar 

  8. White CW, Wright CB, Doty DB, Hiratzka L, Eastham CL, Harrison DG, Marcus ML (1984) Does visual interpolation of the coronary arteriogram predict the physiologic importance of coronary stenosis?. N Engl J Med 310: 819–824

    CAS  PubMed  Google Scholar 

  9. Chen SJ, Carroll JD (2000) 3D reconstruction of coronary arterial tree to optimize angiographic visualization. IEEE Trans Med Imaging 19: 318–336

    Article  CAS  PubMed  Google Scholar 

  10. Messenger JC, Chen SYJ, Carroll JD, Burchenal JEB, Kioussopoulos K, Groves BM (2000) 3D coronary reconstruction from routine single-plane coronary angiograms: Clinical validation and quantitative analysis of the right coronary artery in 100 patients. Int J Cardiovasc Imaging 16: 413–427

    Article  CAS  Google Scholar 

  11. Movassaghi B, Rasche V, Grass M, Viergever M, Niessen W (2004) A quantitative analysis of 3D coronary modeling from two or more projections. IEEE Trans Med Imaging 23: 1517–1531

    Article  CAS  PubMed  Google Scholar 

  12. Garcia JA, Chen J, Hansgen A, Wink O, Movassaghi B, Messenger JC (2006) Rotational angiography (RA) and three-dimensional imaging (3-DRA): an available clinical tool. Int J Cardiovasc Imaging 23: 9–13

    Article  PubMed  Google Scholar 

  13. Blondel C, Malandain G, Vaillant R, Ayache N (2006) Reconstruction of coronary arteries from a single rotational X-ray projection sequence. IEEE Trans Med Imaging 25: 653–663

    Article  PubMed  Google Scholar 

  14. Jandt U, Schäfer D, Rasche V, Grass M (2007) Automatic generation of 3D coronary artery centerlines using rotational X-ray angiography. In: Hsieh J, Flynn MJ (eds) Medical imaging: physics of medical imaging. Proceedings of SPIE, vol 6510. SPIE, Bellingham, p 65104Y

  15. Grass M, Koppe R, Klotz E, Proksa R, Kuhn MH, Aerts H, Op de Beek J, Kemkers R (1999) Three-dimensional reconstruction of high contrast objects using C-arm image intensifier projection data. Comput Med Imaging Graph 23: 311–321

    Article  CAS  PubMed  Google Scholar 

  16. Rasche V, Movassaghi B, Grass M, Schäfer D, Kühl HP, Günther RW, Bücker A (2006) Three-dimensional X-ray coronary angiography in the porcine model: a feasibility study. Acad Radiol 13: 644–651

    Article  PubMed  Google Scholar 

  17. Wink O, Kemkers R, Chen SYJ, Carroll JD (2003) Intra-procedural coronary intervention planning using hybrid 3-dimensional reconstruction techniques. Acad Radiol 10: 1433–1441

    Article  PubMed  Google Scholar 

  18. Kitslaar PH, Marquering HA, Jukema WJ, Koning G, Nieber M, Vossepoel AM, Bax JJ, Reiber JHC (2008) Automated determination of optimal angiographic viewing angles for coronary artery bifurcations from CTA data. In: Miga MI, Cleary KR (eds) Medical imaging: visualization, image-guided procedures, and modeling. Proceedings of SPIE, vol 6918. SPIE, San Diego, p 69181J

  19. Dumay ACM, Reiber JHC, Gerbrands JJ (1984) Determination of optimal angiographic viewing angles: basic principles and evaluation study. IEEE Trans Med Imaging 13: 313–324

    Google Scholar 

  20. Green NE, Chen SYJ, Hansgen AR, Messenger JC, Groves BM, Carroll JD (2005) Angiographic views used for percutaneous coronary interventions: A three-dimensional analysis of physician-determined vs. computer-generated views. Catheter Cardiovasc Intervent 64: 451–459

    Article  Google Scholar 

  21. Klein A, Movassaghi M, Garcia J, Hansgen A, Chen SYJ, Casserly I, Carroll JD (2007) Optimal angiographic views based on 3D reconstructed models. J Am Coll Cardiol 49(9)(Suppl B):296A

  22. Garcia JA, Movassaghi B, Casserly IP, Klein AJ, James Chen SY, Messenger JC, Hansgen A, Wink O, Groves BM, Carroll JD (2008) Determination of optimal viewing regions for X-ray coronary angiography based on a quantitative analysis of 3D reconstructed models. Int J Cardiovasc Imaging. doi:10.1007/s10554-008-9402-5

  23. Mansour M, Reddy VY, Singh J, Mela T, Rasche V, Ruskin J (2005) Three-dimensional reconstruction of the coronary sinus using rotation angiography. J Cardiovasc Electrophysiol 16: 675–676

    Article  PubMed  Google Scholar 

  24. Koppe R, Klotz E, Op de Beek J, Aerts H (1995) 3D vessel reconstruction based on rotational angiography. Proc CARS 1995: 101–107

    Google Scholar 

  25. Suurmond R, Wink O, Chen SYJ, Carroll JD (2005) Three- dimensional coronary angiography. In: Amini AA, Manduca A (eds) Medical imaging: physiology, function, and structure from medical images. Proceedings of SPIE, vol 5746. SPIE, San Diego, p 205

  26. Blendea D, Shah RV, Auricchio A, Nandigam V, Orencole M, Heist EK, Reddy VY, McPherson CA, Ruskin JN, Singh JP (2007) Variability of coronary venous anatomy in patients undergoing cardiac resynchronization therapy: A high-speed rotational venography study. Heart Rhythm 4: 1155–1162

    Article  PubMed  Google Scholar 

  27. Meisel E, Pfeiffer D, Engelmann L, Tebbenjohanns J, Schubert B, Hahn S, Fleck E, Butter C (2001) Investigation of coronary venous anatomy by retrograde venography in patients with malignant ventricular tachycardia. Circulation 104: 442–447

    Article  CAS  PubMed  Google Scholar 

  28. Auricchio A, Klein H, Tockman B, Sack S, Stellbrink C, Neuzner J, Kramer A, Ding J, Pochet T, Maarse A, Spinelli J (1999) Transvenous biventricular pacing for heart failure: can the obstacles be overcome?. Am J Cardiol 83: 136D–142D

    Article  CAS  PubMed  Google Scholar 

  29. Viterbi AJ (1967) Error bounds for convolutional codes and an asymptotically optimum decoding algorithm. IEEE Trans Inf Theory 13: 260–269

    Article  Google Scholar 

  30. Devijver PA, Kittler J (1982) Pattern recognition: a statistical approach. Prentice-Hall, Englewood Cliffs

    Google Scholar 

  31. Albertsen AEIE, Nielsen JC, Pedersen AK, Hansen PS, Jensen HK, Mortensen PT (2005) Left ventricular lead performance in cardiac resynchronization therapy: impact of lead localization and complications. Pacing Clin Electrophysiol 28: 483–488

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jingying Bi.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Bi, J., Grass, M. & Schäfer, D. Optimization of acquisition trajectories for 3D rotational coronary venography. Int J CARS 5, 19–28 (2010). https://doi.org/10.1007/s11548-009-0398-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11548-009-0398-7

Keywords

Navigation