Skip to main content
Log in

Tensor grid based image registration with application to ventilation estimation on 4D CT lung data

  • Original Article
  • Published:
International Journal of Computer Assisted Radiology and Surgery Aims and scope Submit manuscript

Abstract

Purpose

For many image registration tasks, the information contained in the original resolution of the image data is crucial for a subsequent medical analysis, e.g. accurate assessment of local pulmonary ventilation. However, the complexity of a non-parametric registration scheme is directly connected to the resolution of the images. Therefore, the registration is often performed on a downsampled version in order to meet runtime demands and thereby producing suboptimal results. To enable the application of the highest resolution at least in regions of high clinical importance, an approach is presented replacing the usually taken equidistant grids by tensor grids for image representation.

Methods

We employ a non-parametric approach for the registration of a respiratory-gated 4D CT thorax scan. Tensor grids are introduced for the registration setting and compared to equidistant grids. For ventilation assessment, the Jacobian metric is explored.

Results

The application of the tensor grid approach makes the local usage of the original resolution feasible; thereby a smaller registration error is achieved in regions of higher resolution using the tensor grids, while the two types of grids perform similar in regions of equal resolution. Concerning the ventilation assessment, the Jacobian metric yields reasonable results, showing more detail using the tensor grids due to the higher resolution.

Conclusions

The proposed approach using tensor grids preserves registration accuracy, while reducing computational demands. The application of the Jacobian metric for ventilation assessment in conjunction with tensor grids is promising; however, due to a missing ground-truth the medical relevance could not be established for the ventilation estimation so far.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Yamamoto T, Kabus S, von Berg J, Klinder T, Blaffert T, Lorenz C, Keall P (2009) Physiological validation of 4D-CT-based ventilation imaging in patients with chronic obstructive pulmonary disease(COPD). Med Phys 36(6): 2821–2821

    Article  Google Scholar 

  2. Haraguchi M, Shimura S, Hida W, Shirato K (1998) Pulmonary function and regional distribution of emphysema as determined by high-resolution computed tomography. Respiration 65: 125–129

    Article  CAS  PubMed  Google Scholar 

  3. Yaremko BP, Guerrero TM, Noyola-Martinez J, Guerra R, Lege DG, Nguyen LT, Balter PA, Cox JD, Komaki R (2007) Reduction of normal lung irradiation in locally advanced non-small-cell lung cancer patients, using ventilation images for functional avoidance. Int J Radiat Oncol Biol Phys 68(2): 562–571

    Article  PubMed  Google Scholar 

  4. Yamamoto T, Kabus S, von Berg J, Lorenz C, Keall PJ (2009) Impact of four-dimensional CT-derived pulmonary ventilation images on radiotherapy treatment planning for lung cancer. Int J Radiat Oncol Biol Phys 75(3): S443

    Google Scholar 

  5. Hoffman EA, Chon D (2005) Computed tomography studies of lung ventilation and perfusion. Proc Am Thorac Soc 2: 492–498

    Article  PubMed  Google Scholar 

  6. Kauczor H-U, Hanke A, van Beek EJR (2002) Assesment of lung ventilation by MR imaging: Current status and future perspectives. Eur Radiol 12(8): 1962–1970

    PubMed  Google Scholar 

  7. Kauczor, H-U (eds) (2004) Functional imaging of the chest. Springer, Berlin

    Google Scholar 

  8. Cao K, Ding K, Raghavan ML, Christensen GE, Hoffman EA, Reinhardt JM (2008) Registration-based estimates of lung tissue strain in supine sheep. In: Proceedings of international summit on the future of quantitative and functional lung imaging

  9. Kabus S, von Berg J, Yamamoto T, Opfer R, Keall P (2008) Lung ventilation estimation based on 4D-CT imaging. In: Proceedings of first international workshop on pulmonary image analysis, MICCAI, pp 73–81

  10. Fuld MK, Easley RB, Saba OI, Chon D, Reinhardt JM, Hoffman EA, Simon BA (2008) CT-measured regional specific volume change reflects regional ventilation in supine sheep. J Appl Physiol 104: 1177–1184

    Article  PubMed  Google Scholar 

  11. Reinhardt JM, Ding K, Cao K, Christensen GE, Hoffman EA, Bodas SV (2008) Registration-based estimation of local lung tissue expansion compared to xenon CT measures of specific ventilation. Med Image Anal 12: 752–763

    Article  PubMed  Google Scholar 

  12. Cook TS, Tustison N, Biederer J, Tetzlaff R, Gee J (2007) How do registration parameters affect quantitation of lung kinematics. In: Proceedings of medical imaging and computer assisted intervention (MICCAI), pp 817–824

  13. Papenberg N, Modersitzki J, Fischer B (2008) Registrierung im Fokus. In: Proceedings of Bildverarbeitung für die Medizin (BVM), pp 138–142

  14. Haber E, Heldmann S, Modersitzki J (2008) Adaptive mesh refinement for nonparametric image registration. SIAM J Sci Comput 30(6): 3012–3027

    Article  Google Scholar 

  15. Ruppertshofen H (2008) Using tensor grids for non-parametric image registration of 4D CT lung data for ventilation studies. Master’s thesis, Universität zu Lübeck

  16. Ruppertshofen H, Kabus S, Fischer B (2009) Image registration using tensor grids for lung ventilation studies. In: Proceedings of Bildverarbeitung für die Medizin (BVM), pp 117–121

  17. Fischer B, Modersitzki J (2008) Ill-posed medicine—an introduction to image registration. Inverse Probl 24(3): 1–16

    Article  Google Scholar 

  18. Zitová B, Flusser J (2003) Image registration methods: a survey. Image Vis Comput 21: 977–1000

    Article  Google Scholar 

  19. Modersitzki J (2004) Numerical methods for image registration. Oxford University Press, Oxford

    Google Scholar 

  20. Broit C (1981) Optimal registration of deformed images. PhD thesis, University of Pennsylvania

  21. Geiger C, Kanzow C (1999) Numerische Verfahren zur Lösung unrestringierter Optimierungsverfahren. Springer, Berlin

    Google Scholar 

  22. Harris RS, Schuster DP (2007) Visualizing lung function with positron emission tomography. J Appl Physiol 102: 448–458

    Article  PubMed  Google Scholar 

  23. Simon BA, Christensen GE, Low DA, Reinhardt JM (2005) Computed tomography studies of lung mechanics. Proc Am Thorac Soc 2: 517–521

    Article  PubMed  Google Scholar 

  24. Vandemeulebroucke J, Sarrut D, Clarysse P (2007) The POPI-Model, a point-validated pixel-based breathing thorax model. In: Proceedings of international conference on the use of computers in radiation therapy (ICCR)

  25. Murphy K, van Ginneken B, Pluim JPW, Klein S, Staring M (2008) Semi-automatic reference standard construction for quantitative evaluation of lung CT registration. In: Proceedings of medical imaging and computer assisted intervention (MICCAI), pp 1006–1013

  26. Vedam SS, Keall PJ, Kini VR, Mostafavi H, Shukla HP, Mohan R (2003) Acquiring a four-dimensional computed tomography dataset using an external respiratory signal. Phys Med Biol 48(1): 45–62

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Heike Ruppertshofen.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ruppertshofen, H., Kabus, S. & Fischer, B. Tensor grid based image registration with application to ventilation estimation on 4D CT lung data. Int J CARS 5, 583–593 (2010). https://doi.org/10.1007/s11548-010-0419-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11548-010-0419-6

Keywords

Navigation