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Abstract

Purpose Professional ballet dancers are subject to constant
extreme motion which is known to be at the origin of many
articular disorders. To analyze their extreme motion, we
exploit a unique magnetic resonance imaging (MRI) pro-
tocol, denoted as ‘dual-posture’ MRI, which scans the sub-
ject in both the normal (supine) and extreme (split) postures.
However, due to inhomogeneous tissue intensities and image
artifacts in these scans, coupled with unique acquisition pro-
tocol (split posture), segmentation of these scans is difficult.
We present a novel algorithm that exploits the correlation
between scans (bone shape invariance, appearance similar-
ity) in automatically segmenting the dancer MRI images.
Methods While validated segmentation algorithms are avail-
able for standard supine MRI, these algorithms cannot be
applied to the split scan which exhibits a unique posture and
strong inter-subject variations. In this study, the supine MRI
is segmented with a deformable models method. The appear-
ance and shape of the segmented supine models are then
re-used to segment the split MRI of the same subject. Mod-
els are first registered to the split image using a novel con-
strained global optimization, before being refined with the
deformable models technique.

Results Experiments with 10 dual-posture MRI datasets
in the segmentation of left and right femur bones reported
accurate and robust results (mean distance error: 1.39 +
0.31 mm).

Conclusions The use of segmented models from the supine
posture to assist the split posture segmentation was found
to be equally accurate and consistent to supine results. Our
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results suggest that dual-posture MRI can be efficiently and
robustly segmented.

Keywords Segmentation - Registration - Magnetic
resonance imaging - Bone

Introduction

Professional ballet dancers are subject to constant extreme
motions which excessively stress the musculoskeletal struc-
tures of their joints and may contribute to the development
of pathologies such as osteoarthritis (OA). OA is a common
disease of the joint, which mostly yields articular cartilage
loss along with changes in other joint structures (bone remod-
eling, ligamentous and muscular alterations) [1]. In order to
understand the underlying causes from such strains on the
dancer’s joints, it is important to examine the extent of the
dancer’s movements [2,3] as well as the bones morphology
which might explain articular cartilage degeneration [4,5].
The in-vivo examination of the anatomical structures of danc-
ers performing intense postures will undoubtedly support the
understanding and diagnosis of their associated pathologies.
Therefore, the ability to reconstruct and analyze the mus-
culoskeletal structures is an important requirement to reveal
the consequences from repetitive extreme motions performed
by the dancers, e.g., in order to validate the femoroacetab-
ular movements which can be a factor of joint degeneration
through subluxation and excessive labral deformations [4].
In order to analyze their extreme motion, we exploit a
unique magnetic resonance imaging (MRI) protocol [6],
denoted as ‘dual-posture’ MRI, which consists of image pairs
of lower limbs consisting of normal (supine) and extreme
(split) postures, as illustrated in Fig. 1 where the split posture
reveals the maximum extent of the dancer’s vertical lower
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Fig. 1 MRI acquisition: a A volunteer dancer before entering MRI scanner in split posture, a coronal slice of a b supine and ¢ split MRI with bone

overlay, d volume rendering of a split MRI

limb motion. Such imaging data provide rare insights into
the movement of the dancers and enable new observations
from the effects of repeated extreme motion and its impact on
surrounding anatomical structures. A primary requirement to
understand such data is to segment the different musculoskel-
etal structures, such as soft tissues (e.g., muscles, ligaments,
cartilages) and bone tissues (i.e. femur and hip bone) belong-
ing to the hip joint. The segmentation result, for example of
the femurs (Fig. 1), enables quantitative motion and mor-
phological analysis to diagnose femoroacetabular impinge-
ments [4,5], pre-operative planning or to assist subsequent
segmentations of other structures (e.g., cartilages [7,8] or
muscles [9] from segmented bones). However, current seg-
mentation practices that rely on manual or semi-automated
approaches are subjective, may not be reproducible and are
time consuming. There has been several works that attempted
to automate the musculoskeletal MRI segmentation [10—13].
However, an automated approach remains a challenging task
due to the presence of ubiquitous image artifacts, limited
tissue intensity differentiation at joint interfaces caused by
proximity of the neighboring bones and their tissue inhomo-
geneities (e.g., differences cortical/trabecular bone, presence
of potential pathologies like osteoporosis and calcifications)
[10,14].

In this study, we propose a new segmentation algorithm
for dual-posture MRI. We particularly focus our study on
professional ballet dancers performing extreme motions (i.e.
from supine to split postures). Moreover, the main struc-
ture of interest is the femur bone which is a key anatomical
structure playing a crucial role in hip joint behavior anal-
ysis (e.g., relationship between femoral head sphericity and
articular cartilages’ OA [5]). Specifically, we aim to segment
the femur at two postures in order to investigate the pose
changes of the femur between the supine and split postures
which can provide quantitative assessment of the subject’s
extent of motion. The supine posture, which follows standard
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MRI acquisition protocols (e.g., subject positioning and MRI
sequence), can benefit from a priori knowledge in terms of
appearance (intensity distribution within and around tissues
of interest) and organs poses, which facilitates the use of
automated methods of bone segmentation. However, due to
the largely varying orientations and morphologies between
the subjects, and the strong soft tissue deformations evident
around the joint areas, the split posture cannot benefit from
existing algorithms that are optimized for the standard acqui-
sition. Our research innovates in the automated segmentation
of dual-posture MRI by exploiting the characteristics of the
femur being a hard tissue (bone) unaffected by changes in
postures between the supine and the split. An efficient method
to segment the dual-posture MRI is hence proposed where the
results from the validated segmentation of the supine MRI
are used to assist the segmentation of the split MRI of the
same subject.

Related work
Extreme motion analysis

There are significant interests in the field of musculoskeletal
disorders such as with OA which affects the joints. Studying
the causes of OA is crucial as it commonly affects all people
population, particularly the elderly and athletes where it rep-
resents a significant economic burden for western societies
[15]. For instance, abnormal bone morphology observed as
hip femoroacetabular impingements (FAI) is known to be
at the origin of early OA [4,5], but there is still some idio-
pathic OA observed in people who routinely perform extreme
motions. A non-invasive way to assess motion is to use med-
ical images in which the structures of interest are acquired at
different postures. This is a common approach that has been
used in many biomechanical studies [16]. Extreme motion
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is defined as the abnormal and excessive movement of the
joints and is often found in many elite athletes. The relation-
ship between OA and motion is dependent on various factors,
such as the subject characteristics (e.g., gender, age, weight)
and performed activities (frequency, intensity) [17]. In some
cases, moderate activities might not accelerate the develop-
ment of OA and may even be beneficial [18]. However, activ-
ities with extreme motions have been often associated with
an increasing risk for the development of OA.

Our previous studies on professional ballet dancers [2,3]
concentrated on the development of subject-specific anatom-
ical models of the hip structures from MRI that were cou-
pled with kinematical data acquired with motion capture.
Such in silico simulations enabled the biomechanical effects
of extreme movements to be analyzed and put in correlation
with radiological observations such as labral tears or femoral
neck pits.

Another study [19] from the University of Bern corrob-
orates the idea that athletes participating in intense sports
possess a higher rate of hip OA and an earlier onset of this
disease compared to the general population. Using karate
athletes as subjects, a strong correlation between the early
OA and FAI was established.

MRI segmentation of lower limbs

Accurate reconstruction of anatomical models is decisive
to understand the bone morphology (changes) and to carry
out numerical simulations of the joint biomechanics. This
is reflected in the various bone segmentation methods that
were proposed, particularly for the major human joints struc-
tures (e.g., hip [14,20] and knee [10,13]). Most of these
approaches were designed for computed tomography (CT),
which inherently attributes excellent contrasts among the
bone structures [21-25]. The drawback of CT is its limi-
tation in soft tissue differentiation and in order to acquire
the soft and hard tissues simultaneously, MRI is more
frequently utilized. With MRI, however, due to intensity
differences between cortical and trabecular bone [10] and
numerous imagery artifacts (chemical shift, bias field, etc.),
the segmentation of the bone structures is more challeng-
ing. There have been significant advances in the automated
approaches to MRI bone segmentation. In [12] and [26], a
region growing algorithm was introduced to segment bones
from MRI but manual stages were required (ellipses deter-
mination in [12]) or assumptions on the bones location were
made [26]. A recent study [27] has demonstrated the use of
atlas-based non-rigid registration for MRI musculoskeletal
segmentation and muscle action path determination. Alter-
natively, MRI protocol optimization (magnitude and phase)
was presented in [7,13,28] to improve the image quality for
subsequent classification/thresholding. Successful bone seg-
mentation was reported using implicit [10,29] and discrete

[9,11] deformable models, as well as coupling them with
shape priors (e.g., our previous work [20]). Deformable mod-
els were shown to be generally more robust to image artifacts
(noise, diffused boundaries, etc.) due to the (strong) knowl-
edge on the model shapes (topology, smoothness, shape pri-
ors, etc.), given that they are initially relatively close to the
structures to be segmented.

These studies aimed at developing segmentation algo-
rithms that were designed for a single posture acquisition
using a standard imaging protocol. Thus, the capability of
these algorithms for the segmentation of non-standard split
MRI may not be applicable (due to, e.g., pose assumptions
violated, protocol tuning not possible, etc.). Furthermore,
these approaches were not designed to fully use all the infor-
mation within the dual-posture data of the same patient.

Gilles et al. [30] presented a method for dynamic MRI
tracking, which took advantage of the similarity between sev-
eral postures from the same subject. A first manual initializa-
tion was used to segment an initial MRI image. The resulting
segmented bone was then manually and coarsely positioned
in another MRI with different posture, and its position was
eventually refined with a rigid model-to-image registration.
Two images were thus ultimately segmented, but the various
manual actions seriously hindered the automation and ease
of use of the approach.

Methodology

Our proposed segmentation methodology works in two
phases—Supine and Split postures—as shown in Fig. 2. For
the supine segmentation, an atlas-based registration is used
as an initialization for a deformable models method coupled
with shape priors. The derived result is then used for the split
MRI segmentation as an initialization parameter in a con-
strained model-to-image registration. A deformable model
is again used for further refinements.

Material and pre-processing
MRI acquisitions and ground truth construction

Eleven female dancer subjects (avg.: 18.6years) were
scanned (with consent) using a 1.5-T MRI device (Philips
Medical Systems) with the “VIBE’ protocol (Axial 3D Tl1,
TR/TE =4.15/1.69 ms, FOV/Matrix = 35 cm, 256 x 256, res-
olution=1.367x1.367x5mm). For each subject, a supine
and two split (right and left) MRI were acquired. In the supine
posture, both thighs were acquired covering a field-of-view
(FOV) from the iliac crests to the beginning of the proxi-
mal tibias (Fig. 1b). Dancers entered the scanner in the right
and left split posture (Fig. 1a) and were scanned using the
same protocol, producing the ‘split’ datasets (Fig. Ic, d). The
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Fig. 3 Supine MRI segmentation pipeline

comparatively low resolution in these MRI to other standard
MRI acquisitions was attributed to the large FOV and short
acquisition time. Subjects were monitored and asked to
remain as still as possible during the acquisition to avoid
the formation of motion artifacts.

A subject was arbitrarily chosen among the 11 subjects
as the ‘atlas’ and the femurs of the atlas in supine posture
were segmented using an interactive segmentation performed
by experienced researchers under the direct supervision of
expert radiologists from the University Hospital of Geneva,
Switzerland. The interactive segmentation used deformable
models which were controlled by ‘constraint points’ man-
ually placed by the operator. Using the same approach, all
subject MRIs were segmented and the resulting segmented
structures were referred to as the ‘ground truth’ for use in
quantitative assessments.

Supine MRI segmentation

A detailed description of the supine MRI segmentation
approach is illustrated in Fig. 3.

Atlas-based registration for segmentation initialization
For each subject’s supine MRI, the MRI was registered

to the atlas MRI using the volumetric registration toolset
ElastiX [31]. The registration estimated the unknown non-
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rigid transform 7 between the fixed (atlas) (Fig. 4a) and the
moving (subject MRI) images (Fig. 4b). Initially, an affine
alignment was performed followed by a non-rigid B-Splines
transformation to result in a registered subject MRI to the
atlas. Both the transformations were optimized with stan-
dard gradient descent optimizer and a multi-resolution strat-
egy with 3 resolution levels was used to avoid the local min-
ima, where 100 iterations were applied at each level. For the
B-Splines transform, a grid of 16 x 16 x 16 voxels was used.
These parameters were derived from trials which assessed
the impact of the parameters with respect to the final seg-
mentation results. The resulting T was used to transform the
atlas’s segmented meshes which were then used in the subse-
quent deformable models based segmentation of the subject
MRI (see Fig. 4b).

Deformable models based segmentation

As shown in Fig. 2, the registration results provide initializa-
tion for a further segmentation, based in our case on deform-
able models (Fig. 3). In our previous work [20], we presented
a segmentation method based on physically based deform-
able models. Models were represented as 2-simplex meshes
[32] (dual of triangular meshes) with vertices regarded as
lumped mass particles. Models evolved under the Newtonian
law of motion and were driven by external image forces. The
image forces guided the models toward boundaries which had
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Fig. 4 Registration-based initializations for supine (a, b) and split
(c—f) images. a—b non-rigid registration between a atlas and b subject’s
supine MRI: blue overlay represents the a atlas and b the transformed
right femur with the computed transformation T the yellow grid illus-
trates the non-rigid deformation. c—f model-to-image registration: the

hip joint center (HJC) is estimated in ¢ the supine segmented model by
a sphere fitting (yellow circle) approach and on d the image by a mouse
click on the center of the femoral head. The sought rigid transform M
is constrained to be a rotation around the HJIC with a small translation,
as shown in (e) and (f)

Test ¢
split MRI segmented
Globall del
. Y Initialized Fine segmentation mode
Constrained +
e Model (deformable model)
HIC in Initialization labeled test
split image image

Supine
segmented
model

Fig. 5 Split MRI segmentation pipeline

(i) local intensity neighborhoods, denoted as intensity pro-
files (IP) [22,32], similar to pre-defined IPs, and (ii) expected
gradient directions [9]. In our case, these pre-defined IPs were
approximated from the atlas MRI. To cope with intensity
variations between the IPs of different datasets, the robust
normalized cross correlation (NCC) similarity measure was
used:

NCClp.q) = > (i —P)gi—q) 0
2 = Y @ — 3
wherep = {p1,..., pa} and ¢ = {q1, ..., qq} are two IPs

of same length and p and g are the mean of the samples
pi and g;, respectively. Since the dual-posture MRI images
were corrupted with artifacts, noise and low image resolu-
tion, the models evolution must be regularized to prevent
false deformations. Regularization forces, based on smooth-
ing and statistical shape models (SSM) of the evolving shapes
[33], were applied, in which the SSM point correspondence
was established with a template model-to-image registration

procedure [20,34] from a training dataset of bone shapes
(exclusive of the dancer data).

Split MRI segmentation

The split segmentation exploits a global initialization fol-
lowed by the same supine deformable model segmentation
as depicted in Fig. 5.

Constrained global initialization

Its fundamental idea relies on the use of shape and appearance
of the segmented models from the supine MRI of the same
subject, where the bone structure does not deform between
the two postures and intensity neighborhoods in vicinity
to the bone surface undergo minor variations compared to
other anatomical regions. The initialization problem was
thus reduced to a rigid model-to-image registration in which
a model (segmented mesh from subject supine MRI) was
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registered to the subject’s split image by finding an unknown
rigid transformation M, as illustrated in Fig. 4e, f.

The bone position in the split image was not a known
prior, as each dancer performs a split with a different degree
of ‘bending’ and positions herself in a preferred and differ-
ent manner in the scanner. It is thus necessary to constrain
the rigid registration. Our approach constraints the supine
femur shape’s rotation to be centered around its hip joint
center (HJC), as shown in Fig. 4e, f. The HJIC’s position was
approximated in the split image by a simple mouse click on
a slice (Fig. 4d) as the center of the femoral head, and on the
bone shape (Fig. 4c) by an automatic sphere fitting procedure
[24]. Points used in the sphere fitting were defined only once
on the atlas femur model. This constrained motion mimics
the femur kinematics (ball-and-socket joint) and limits the
transform parameter’s search space. The rigid transform M
also considered small isotropic translations of 1 mm around
the HJC to account for the error in positioning the HIC in the
image. The computation of M was formulated as the minimi-
zation of a functional f which expresses the degree of fitting
of femur model x to the split MRI. The functional f'uses the
same similarity measure based on the NCC of intensity pro-
files (1), and the reference IPs, IP;ef , were then computed
from the supine MRI:

F(M; x) =" NCCUP;i (M (x)), 1)) )

1

where M(x) is the model transformed by the rigid transform
M, i indicates the indices of the points of M(x) within the
image extents and IP; is an IP extracted at point i. To min-
imize f, the differential evolution (DE) optimizer [35] was
selected as it is a global and self-adaptive technique. Adopt-
ing the concepts from evolutionary algorithms, DE consid-
ers the transformation parameters vector (3 rotation angles
and 3 translations) as an individual of a population which
undergoes transformations through mutation, crossover and
selection operations. DE was selected due to its robustness
against the presence of local minima and it being not sensi-
tive to the initialization. The chosen parameters for the DE
were suggested in the work of [35]. In particular, we used
the ‘RANDIBIN’ crossover scheme and set the number of
generations to 100. With the completion of the DE-based ini-
tialization, a local minimization of the functional f based on
the downhill simplex method [36] was finally conducted to
refine the transform M.

Deformable models based fine segmentation
As with supine MRI, deformable models are applied as a fine

segmentation using the aforementioned initialization with
reference IPs computed from the supine MRI.
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Results

Our proposed algorithm was evaluated with 10 female dancer
datasets. All results were qualitatively and quantitatively
measured against the ground truth, using well-known evalu-
ation metrics that aggregates (i) Average symmetric surface
distance (ASSD); (ii) Average symmetric root mean square
surface distance (ASRSD); (iii) Maximum surface distance
(MSD); and (iv) Volumetric overlap error (VOE) [37]. Most
of these measures are based on the (asymmetric) ‘surface dis-
tance’ SD(x,y) between meshes x = {x1,...,x,} and y =
{¥1,..., ¥m}. SD is defined as SD(x, y) = >, d(x;; y)/n,
where d(x;; y)denotes the surface distance at point level and
is computed as the distance in mm between point x; and its
projection on the surface of mesh y. The ASSD is one of the
most commonly used measures [37] which we adopt as the
reference measure.

Supine posture segmentation evaluation

Averaged results of the supine posture segmentation are
shown in Table 1 for both the registration (initialization) and
deformable model-based ‘fine’ segmentation. All the data
were registered using the same atlas and registration parame-
ters defined in section “Related work”. The registration errors
were as expected high and inconsistent (e.g., average ASSD
of 5.86 £2.15 mm for both sides); however, the results in all
cases were sufficient for its use as an initialization of the
subsequent fine segmentation. Indeed, the fine segmentation
resulted in significant improvements, e.g., VOE of 50.13%
dropped to 17.18%. Figure 6 shows the differences between
the two segmentation phases among the 10 subjects. The
errors between the registration and fine segmentation results
were in average improved by 75%, and the results were sta-
tistically significantly different (e.g., p-value=0.0001 with
a one-tailed Mann—Whitney rank test for left/right femur).
More importantly, the variance between the subjects had
even larger improvements of 83% thus suggesting the consis-
tency and the reliability of the fine segmentation, even with
not so accurate initializations. The use of SSM contributed
to the robustness of the fine segmentation to bad initializa-
tions.

The quantitative findings are confirmed by the visual
results, where Fig. 7 illustrates the accuracy of the pro-
posed dual-posture segmentation, exemplified by subject 1
for which the registration error was the highest (ASSD of
10.29 mm) and subject 10 who had the lowest initialization
errors (ASSD 3.73 mm). The visual differences between the
fine segmentation and the ground truth are minor for both
subjects. The overall performance of the fine segmentation
results was ASSD of 1.48+0.36 mm (average of left and
right femurs). Comparative examples between the fine seg-
mentation and the ground truth are shown in Fig. 8. In order
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Table 1 Supine overall
registration and fine Bone ASSD (mm) ASRSD (mm) MSD (mm) VOE (%)
:\%:rlj nza:tlzl(s)?arelga(l)rrs deviation) Registration
for leffand‘right femurs from 10 Right femur 5.66+2.23 7.74+3.41 26.18+11.17 48.691+9.48
subjects Left femur 6.05+2.08 8.074+2.73 27.38+7.48 51.5749.94
All 5.86+2.15 7.90+3.07 26.78+£9.32 50.13£9.71
Fine segmentation
Right femur 1.27+0.36 2.074+0.54 9.38+£2.45 16.28£2.98
Left femur 1.68+£0.37 2.65+0.64 11.35+£2.01 19.69+£2.33
All 1.48+0.36 2.36+0.59 10.37+£2.23 17.98£2.67
12 below 2mm meaning that large errors did not excessively
—$=RE aftarrog ciration cover large portions of the bone.
10 —A— RF after refinement
——LF after registration
. ELFafer iiomant Split posture segmentation evaluation
E The results of split segmentation are reported in Table 2 with
é 6 visual comparisons in Fig. 10. These results highlight the
2 capabilities of the constrained global initialization (GI) to
4 yield initial models that match closely to the ground truth
(e.g., worst subject was 7 with ASSD of 4.57 mm for right
2 femur). As in the supine data, the fine segmentation has again
significantly improved the overall ASSD, from 2.22+1.10
0 to 1.304+£0.26 mm (p-value = 0.024). Figure 11 typically

Subject Id

Fig. 6 Segmentation results errors for supine MRIs measured with
ASSD for the registration (initialization) and fine segmentation phases.
Both the right femur (RF) and left femur (LF) results of all 10 subjects
are plotted

to study the largest error range, we compared all the seg-
mentation models to their ground truth counterparts using
the average SD at the point level (i.e., for each point of the
segmentation model, the SD at point level was computed and
averaged among the 10 subjects). This produced an error dis-
tribution over the bone, which was color-mapped for quanti-
tative inspection (Fig. 9a). Largest errors were localized in the
regions of the lesser (LT) and greater (GT) trochanters, and
particularly the patellar surface (PS) and the condyles (C).
Errors in C and PS regions were explained by the low image
intensity (see e.g., Fig. 7ain the knees section) and large slice
thickness (5 mm) which hindered the segmentation of regions
parallel to the axial plane. The LT and GT are regions where
the femur anatomy is more complex and hampered by noise,
and thus the SSMs used in the fine segmentation were not
always able to perfectly express the variability. This resulted
in lower segmentation accuracy in relation to other regions,
which is consistent with other studies [38]. Nevertheless, the
error distribution analysis showed that 80% of errors were

illustrates this improvement between initialization and fine
segmentation. As with the supine results, the split segmen-
tation resulted in satisfactory agreement to the ground truth,
in low standard deviation (0.26 mm), which highlighted the
precision of the approach, and in a similar error distribu-
tion (Fig. 9b). Compared to the supine results, the overall
accuracy was better but some high errors were observed in
other highly localized regions, such as the intercondylar fossa
(Fig. 9b).

Discussions and future work

Our proposed dual-posture MRI segmentation resulted in
reliable and robust segmentations of the femurs with clin-
ical images of professional ballet dancers. Our quantitative
assessment demonstrated that our approach was able to seg-
ment femurs with an average error (split and supine) of
1.39 £+ 0.31 mm, which is sufficient for use in extreme motion
analysis and diagnosis using these data. In fact, all final seg-
mentation errors for both supine and split postures were
below the value of 1.5mm, error which has been reported
as satisfactory for bone computer-aided applications [39].
Moreover, it is worth mentioning that in some subjects, due
to the low resolution MRI, the ground truth that was man-
ually delineated by the expert was error-prone (e.g., visual
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Fig. 7 a, ¢ Registration (yellow) versus ground truth (blue) results for subject 1 and 10, respectively, in supine MRI. b, d Fine segmentation
(yellow) versus ground truth (blue results for subject 1 and 10, respectively

Fig. 8 Comparison between the ground truth (yellow) and the fine segmentation (blue) result in a supine MRI data with zoomed overlays

Fig. 9 Average surface (a) PS
distance (SD) error distribution
over a standard right femur
shape. A color mapping of the
error on the shape reveals the
largest errors on the regions of
the patellar surface (PS), the
greater (GT) and lesser
trochanters (LT), condyles (C)
and intercondylar fossa (IF) for
the a supine and b split final
results

cr |(b)
6.11 % 5.69
4.65 IF I4.3z
3.17 : 2.94
|l.7u Il_s,T
0.23 0.20
SD mm SD mm

assessment of the ground truth of trochanters in Fig. 8b),
resulting in lower segmentation evaluation scores. The con-
sistency of the split segmentation in relation to the supine
results suggested that our algorithm was adequate in using
the validated supine posture segmentation result for assisting
the segmentation of unique split posture protocol. Our algo-
rithm was not limited to the use of deformable models as

@ Springer

presented in this study, where the segmentation of the femur
in the supine MRI could be derived with other segmentation
approaches (e.g., [13,26]).

The low accuracy in the atlas-based registration was attrib-
uted to the use of an atlas which has large differences in inten-
sity distributions and anatomical variations when compared
to subject datasets. Furthermore, the registration attempted
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Table 2 Split overall
constrained initialization and Bone ASSD (mm) ASRSD (mm) MSD (mm) VOE (%)

fine segmentation errors
(average =+ standard deviation)

Constrained initialization

for left and right femurs from 10 Right femur 228+1.11 333+1.47 12.324+4.99 25.0249.20
subjects Left femur 2.16£1.09 3.16£1.40 12.2443.60 24.5949.22
All 222+1.10 3244143 12.28+4.29 24.80£9.21

Fine segmentation
Right femur 1.19£0.20 1.89+£0.24 8.68+£1.52 16.05£2.21
Left femur 1.41£0.33 2.25+0.46 10.38£1.98 17.6£3.02
All 1.30£0.26 2.07+£0.35 9.53£1.75 16.83£2.62

Fig. 10 Comparison between the ground truth (yellow) and the fine segmentation (blue) in split MRI with zoomed overlays. a, b and ¢, d are
respectively from a right and left split segmentations

Fig. 11 Example of worst case
of split initialization (yellow)
compared with the fine
segmentation results (blue),
which are significantly better
(decrease of ASSD from 4.57 to
1.03 mm)
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to register MRI that were mostly composed of soft tissues,
thus the registration emphasized the similarity among the
soft tissues rather than the femur. Nevertheless, the atlas used
was based on a single subject scan and was able to produce
a satisfactory initialization for this study. This was possi-
ble because all the subject scans were from a same popu-
lation group, sharing same gender, age group, and similar
physical attributes (e.g., height). We anticipate that with the
addition of statistical properties in the construction of the
atlas, e.g., atlas averaging via clustering of the registered
data [40], the initialization of the segmentation should be
improved, thus leading to further improvements in the seg-
mentation.

The segmentation of a split posture could theoretically
follow the same procedures as in the supine segmentation,
i.e., registration to an atlas for initialization. However, in our
assessment, a selection of a subject for use as the atlas in split
postures failed due to the ubiquitous inter-subject variations
between the split images (unpredictable variations of femur
rotation angles and surrounding soft tissue deformations),
which strongly affected the registration process. Similarly, an
intra-subject registration between the supine and split MRI
remained even more problematic due to the larger rotation
variations between the two postures.

The proposed algorithm expedites the tedious and com-
plex (especially the proximal femur) manual segmentations
of the femur bone in MRI images. Our algorithm requires in
average 11 min to process the dual-posture MRI (segment-
ing both the left and the right femurs in supine and split
images) using modest PC specifications (3.40 GHz P4; 2 GB
RAM). This measured time encompasses both the registra-
tion (non-rigid and model-to-image) and deformable models
based segmentation. This time is expected to decrease sig-
nificantly with code optimization and better PC configura-
tions. In contrast, the average time of 24 min was measured
in the manual delineation of the same MRIs for the ground
truth data construction using the supervised segmentation
approach (see Section on Ground Truth Construction).

Our segmentation of the dual-posture MRI is fully auto-
matic apart from the manual placement of the HJIC in the
image. Existing methods to automatically detect the HIC that
rely on edge detectors, such as Hough transforms [41] failed
to provide adequate results. This was due to the low image
resolution and weak gradients at the femoral head bound-
aries. We proposed thus a simple yet efficient manual inter-
vention, requiring only a single click approximation and we
are currently working on automatic solutions to replace this
manual task.

Future work will also involve the segmentation of other
anatomical structures, such as the hip bones, or patholog-
ical bony structures such as oblique/complete fractures or
necrotic femoral heads [26]. Furthermore, a more thorough
analysis of extreme motion effects in professional dancers
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will be conducted. Finally, other less extreme and more com-
mon motions will be studied in order to target a larger and
more diversified population of (sportive) people.

Conclusions

This study presented an automated MRI segmentation of the
femur from dual-posture MRI for extreme motion analysis
of professional ballet dancers. With our novel exploitation of
the rigid properties of the bone structure (no change between
supine and split postures), we demonstrated the effectiveness
of our segmentation algorithm in delineating the dual-posture
images. Although our study targets the particular population
of professional ballet dancers, the proposed methodology is
applicable to the study of other hip motion as long as images
of the various postures are available. The supine-split motion
was chosen because it provides an extreme case scenario to
assess the efficiency and robustness of the proposed frame-
work.
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