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Abstract

Backgrounds Accurate three-dimensional (3D) models of
lumbar vertebrae are required for image-based 3D kinemat-
ics analysis. MRI or CT datasets are frequently used to derive
3D models but have the disadvantages that they are expen-
sive, time-consuming or involving ionizing radiation (e.g.,
CT acquisition). An alternative method using 2D lateral fluo-
roscopy was developed.

Materials and methods A technique was developed to recon-
struct a scaled 3D lumbar vertebral model from a single two-
dimensional (2D) lateral fluoroscopic image and a statistical
shape model of the lumbar vertebrae. Four cadaveric lum-
bar spine segments and two statistical shape models were
used for testing. Reconstruction accuracy was determined
by comparison of the surface models reconstructed from the
single lateral fluoroscopic images to the ground truth data
from 3D CT segmentation. For each case, two different sur-
face-based registration techniques were used to recover the
unknown scale factor, and the rigid transformation between
the reconstructed surface model and the ground truth model
before the differences between the two discrete surface mod-
els were computed.

Results Successful reconstruction of scaled surface models
was achieved for all test lumbar vertebrae based on single
lateral fluoroscopic images. The mean reconstruction error
was between 0.7 and 1.6 mm.

Conclusions A scaled, patient-specific surface model of the
lumbar vertebra from a single lateral fluoroscopic image can
be synthesized using the present approach. This new method
for patient-specific 3D modeling has potential applications in
spine kinematics analysis, surgical planning, and navigation.
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Introduction

Several studies have shown that fluoroscopy is well suited to
in vivo lumbar spine kinematics analysis due to its capabil-
ity of screening patients during free motion with an accept-
ably low radiation dosage [1,2]. The disadvantage of this
technique, however, lies in its limitation to planar motion
analysis. To enable fluoroscopic image—based 3D kinematic
analysis, accurate three-dimensional (3D) models are needed
[3,4]. If kinematics of an implanted prosthesis is the inter-
est, a computer-aided design (CAD) model can be used
[5]. However, this is not the case for analyzing in vivo
lumbar spine kinematics. Thus, MRI or CT datasets are fre-
quently used to derive 3D models but have the disadvantages
that they are expensive, time-consuming or involve ioniz-
ing radiation (e.g., CT acquisition). In this paper, we pres-
ent a technique to reconstruct a scaled 3D lumbar vertebral
model from a single two-dimensional (2D) lateral fluoro-
scopic image.

Constructing a 3D surface model of the vertebra from
2D calibrated fluoroscopic image(s) is a challenging task.
A priori information is often required to handle this other-
wise ill-posed problem. Previously, kriging-based methods
[6-11] as well as statistical shape model (SSM)-based meth-
ods [12-14] have been proposed.

Kriging-based methods start with identification of a prede-
fined set of anatomical landmarks in one or more radiographs.
The reconstruction is done by first estimating the scale and
the rigid transformation of a generic object with respect
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to those identified landmarks and then applying a kriging
algorithm to deform the generic object to obtain the final
surface model. A limitation common to most kriging-based
methods lies in the requirement of the interactive identifica-
tion of landmarks. For example, Aubin et al. [6] required that
a set of 6 stereo-corresponding points per vertebra should be
identified, while in a later work from the same group [7],
this set was increased even more to include landmarks that
were visible in only one of the radiographs. Because such an
interactive landmark identification process is time-consum-
ing, error-prone, and user-dependent, statistical correlation—
based methods have been proposed to reduce the number of
landmarks that are required to be identified from the X-ray
radiographs for decreasing the reconstruction time. Using a
linear regression model, Pomero et al. [8] reduced the num-
ber of landmarks to a set of four landmarks per vertebra per
radiograph such that the reconstruction time was decreased
to less than 20 min. Both Humbert et al. [9] and Dumas et al.
[10] tried to reduce user interaction by requesting the iden-
tification of the spine midline on two radiographs and by
making use of statistical data for inferring the spine shape.
An average identification time of 2.5-5min was reported
[9,10]. The more recent work published by Kadoury et al.
[11] also started with the identification of the spine midline
on two radiographs. The personalized 3D reconstruction of
the spine was then achieved with the help of a segmentation
algorithm, which took into consideration the variable appear-
ance of scoliotic vertebrae from standard quality images in
order to segment and isolate individual vertebrae on the radio-
graphic planes.

Instead of using one generic object as the prior informa-
tion, the methods in the second category use statistical shape
models obtained from statistical shape analysis. Statistical
shape analysis is an important tool for understanding ana-
tomical structures from medical images [15—17]. Statistical
shape models give efficient parameterization of the shape
variations found in a collection of sample models of a given
population. Model-based approaches are popular due to their
ability to robustly represent objects [18,19]. In Benameur
et al. [12,13], a SSM of scoliotic vertebrae was fitted to two
radiographic views by simultaneously optimizing both shape
and pose parameters. The optimal estimation was obtained
by iteratively minimizing a combined energy function, which
is the sum of a likelihood energy term measured from an edge
potential field on the images and a prior energy term mea-
sured from the statistical shape model. Boisvert et al. [14]
used a statistical articulated model of the spine for 3D recon-
struction from partial radiographic data. Previously, we pro-
posed a 2D-3D reconstruction scheme combining statistical
instantiation and regularized shape deformation with an itera-
tive image-to-model correspondence-establishing algorithm
and showed its application to reconstruct a surface model of
the proximal femur [20,21].
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Common to all these previous works is that at least two
images are used as the input. Recently, we proposed a novel
technique that could reconstruct a scaled, patient-specific
3D surface model from a standard X-ray radiograph and
showed its application to reconstruct a surface model of
the pelvis [22]. Based on this work, this paper presents an
improved technique that combines a landmark-to-ray regis-
tration with a statistical shape model-based 2D/3D recon-
struction scheme for reconstructing a scaled, patient-specific
3D surface model of the lumbar vertebra from a single fluoro-
scopic image. The landmark-to-ray registration is used to find
an initial scale and an initial rigid transformation between the
fluoroscopic image and the statistical shape model. The esti-
mated scale and rigid transformation are then used to initial-
ize the statistical shape model-based 2D/3D reconstruction
scheme. The differences between the present work and the
works we introduced previously [20-22] are as follows: (a) in
our previous works [20-22], the image contours were manu-
ally extracted by interactively picking points from the X-ray
images, while in the present work, we propose to use a semi-
automatic segmentation tool based on the Livewire algorithm
[23]. The crucial point of implementing the Livewire algo-
rithm is the construction of its local cost function. The local
cost function in this work is calculated from two compo-
nents: multiscale gradient magnitudes and gradient direction
and (b) our single X-ray image—based 2D/3D reconstruction
technique has only been applied to derive a surface model of
a single anatomy, i.e., the pelvis, while in the present work,
we would like to adapt it to reconstruct a surface model of
the lumbar vertebra using statistical shape models that are
constructed from a set of training lumbar vertebral models
across five lumbar levels.

This paper is organized as follows. The construction of the
statistical shape models is discussed briefly in the following
section. This is then followed by the sections that describe
the statistically deformable 2D/3D reconstruction approach
and experimental design. Finally, the experimental results,
discussion and conclusions are provided.

Construction of the statistical shape models
of the lumber vertebrae

In this work, two statistical shape models were constructed
from two databases consisting of different numbers of train-
ing lumbar vertebral models. Our goal was to construct statis-
tical shape models of the lumbar vertebrae, simultaneously
considering shape information from all five lumbar levels,
and thereby to determine the principal modes of shape vari-
ation. We chose the point distribution model (PDM) [19] as
the representation of the SSMs of the lumbar vertebrae. The
reason why we constructed two statistical shape models was
because there was significant shape difference between the
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lumbar vertebrae contained in the first three of the four test
lumbar spine segments used in the present study and those in
the fourth test lumbar spine segment (see Sect. “Experimental
design” below for details). More specifically, all the lumbar
vertebrae in the first three of the four test lumbar spine seg-
ments have broken transverse processes, while all the lumbar
vertebrae in the fourth test lumbar spine segment have com-

Fig. 1 The first two
eigenmodes of variation of the
two PDMs used in the present
work. The shape instances from
left to right at each row were
generated by evaluating

X + ok pk, With

o € {—=2,—1,1,2}. a Front view
of the broken-vertebra PDM

(k = 1: the 1st row; k = 2: the
2nd row), b lateral view of the
broken-vertebra PDM (k = 1:
the 1st row; k = 2: the 2nd
row); ¢ front view of the
complete-vertebra PDM (k = 1:
the 1st row; k = 2: the 2nd
row); and d lateral view of the
complete-vertebra PDM (k = 1:
the 1st row; k = 2: the 2nd row)

Gme ORk 5k AR

plete structures. Thus, the first PDM was constructed from
a training database consisting of 11 CT-segmentation-based
binary volumes of lumbar vertebrae with broken transverse
processes (the broken-vertebra database) and was named as
the broken-vertebra PDM (according to the spine level, the
distribution of these 11 binary volumes are as follows, L1
level: 1; L2 level: 3; L3 level: 3; L4 level: 3, and L5 level: 1).
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The second PDM was constructed from a training database
consisting of 39 CT-segmentation-based binary volumes of
lumbar vertebrae with complete structures (the complete-
vertebra database) and was named as the complete-vertebra
PDM (according to the spine level, the distribution of these
39 binary volumes are as follows, L1 level: 3; L2 level: 5; L3
level: 9; L4 level: 14; L5 level: 8). Although different train-
ing data were used, the exact same construction procedure
was applied in the present work to construct the two PDMs.
More specifically, a binary volume of a L3 level vertebra in
the associated training database was chosen as the reference.
Demon’s algorithm, as implemented in MedINRIA [24], was
used to estimate the deformation fields between the chosen
reference binary volume and the other floating volumes in the
associated database, i.e., for construction of the broken-ver-
tebra PDM, we need to find the deformation fields between
the reference binary volume chosen from the broken-verte-
bra database and the other 10 floating volumes, while for
construction of the complete-vertebra PDM, we have to find
the deformation fields between the reference binary volume
chosen from the complete-vertebra database and the other 38
floating volumes. Each estimated deformation field was then
used to displace the positions of the vertices on the refer-
ence surface model to the associated target volume. We thus
obtained two sets of aligned surface models with established
correspondences, with the first set consisting of 11 aligned
surface models and the other set containing 39 aligned sur-
face models.

Following the alignment, the two PDMs were constructed
as follows. Let x;,i =0,1,...,m — 1, be m (here m = 11
for the broken-vertebra PDM or m = 39 for the complete-
vertebra PDM) members of the aligned training surface mod-
els. Each member is described by a vector x; with N (here
N = 5000 for both the broken-vertebra PDM and the com-
plete-vertebra PDM) vertices:

X; = {X0, Y0, 20, X1, Y1, 215 - -+ » XN—1, YN—1, IN—1) (D

A PDM was then obtained by applying principal component
analysis [25] to the associated training surface models:

m—1
D=(m-D7") D -0 x - %
i=0
P =(po,p1,--); D-pr=07 px )

where X and D are the mean vector and the covariance matrix
of the associated PDM, respectively. {akz} is the non-zero
eigenvalues of the covariance matrix D, and { py } is the corre-
sponding eigenvectors. The descendingly sorted eigenvalues
okz and the corresponding eigenvector py are the principal
directions spanning a shape space with X representing its ori-
gin. Figure 1 shows the variability captured by the first two
modes of variations of the two PDMs.
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Statistically deformable 2D/3D reconstruction

Without loss of generality, here we assume that the input
image is calibrated and image distortion is corrected. For
more details about fluoroscopic image calibration, we refer
to our previous work [26]. Thus, for a pixel in the input image,
we can always find a projection ray emitting from the focal
point of the image through the pixel.

The single image—based surface model reconstruction
technique proposed in this paper is based on a hybrid 2D/3D
deformable registration process, coupling a landmark-based
scaled rigid registration with an adapted SSM-based 2D/3D
reconstruction algorithm [20,21]. Different from the situ-
ation in our previous works [20,21], where two or more
calibrated X-ray images were required as the input for a suc-
cessful reconstruction, here only a single lateral fluoroscopic
image is available. Similar to the situation when multiple
images are used, the convergence of the single image—based
2D/3D reconstruction also depends on the initialization and
on the image contour extraction. Thus, in the following,
we focus on the image contour extraction and on a land-
mark-based scaled rigid registration for initializing the single
image-based 2D/3D reconstruction.

Image contour extraction

As a feature-based 2D/3D reconstruction approach, our tech-
nique requires a pre-requisite image contour extraction.
Explicit and accurate contour extraction is a challenging
task, especially when the shapes involved become complex
or when the background of the image becomes complex. In
this paper, we feel that it is a far better choice to provide the
user with a tool that supports interactive segmentation but
at the same time speeds up the tedious manual segmentation
process and makes the results repeatable. This leads us to
developing a semiautomatic segmentation tool.

Our semiautomatic segmentation tool is based on the Live-
wire algorithm introduced by Mortensen and Barrett [23]. In
their paper, graph edges are defined as the connection of two
8-adjacent image pixels. A local cost function is assigned to
the graph edges to weight their probability of being included
in an optimal path. In this work, we use two static feature
components to form this cost function. The first component
fc is calculated from Canny edge detectors [27] at three
different scales (the standard deviations of the Gaussian
smoothing operator in these three scales are 1.0, 2.0, and
3.0, respectively) as follows.

Let us denote the edges extracted by the Canny edge detec-
tor at three different scales as E'(q), E2(q), and E3(q),
respectively. {Ei(q); i=1,2, 3} is defined as follows: if
pixel q is a detected edge pixel at the ith scale, then
Ei(q) = 1; otherwise, it equals to zero. Let us further
denote the gradient magnitudes at different scales as G (q),
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G?(q), and G3(q), respectively. Then, we have

B G'(q) I
folq) = (1-0 — m -E (Q))

G*(q) )
+(1.0 " nx (G2@) -E*(q)
G3(q) 5

According to Eq. (3), if q is not a detected edge pixel at the
ith scale, a constant cost of 1.0 will be added to the cost func-
tion. Otherwise, the cost depends on the gradient magnitude:
the bigger the magnitude, the smaller the cost.

The second component, the gradient direction fp(p, q),
is calculated according to the form proposed in the original
paper [23], which is used to add a smoothness term to the
contour definition by assigning high costs to sharp changes.

Finally, these two static features are combined by weighted
summation to form a single statistic local cost function as
follows

I(p,q) =0.6fG(q) +0.4fp(p,q) 4

where the weights for these two terms are empirically deter-
mined.

Based on the Livewire algorithm, the semiautomatic con-
tour extraction starts with a seed point, which is interactively
placed by the user with a click of the left mouse button.
During the extraction, the user can add more seed points by
clicking the left mouse button. A click of the right mouse
button will finish the definition of one contour. After that,
clicking the left mouse button again starts the extraction of a
new contour. Figure 2 shows an example of how the livewire
segmentation technique is used to extract contours from the
input image.

Fig. 2 Example of using livewire segmentation algorithm to extract
image contours. The white crosses show where the user clicks the mouse
button

Landmark-based scaled rigid registration for initialization

Initialization here means to estimate the initial scale and the
rigid transformation between the mean model of the PDM
and the input fluoroscopic image. For this purpose, we have
adopted an iterative landmark-to-ray scaled rigid registration.
The four anatomical landmarks that we used here are the cen-
ter of the top surface of the vertebra body, the center of the
bottom surface of the vertebra body, the geometrical center
of the vertebra body, and the center of the spinal process tip.
Their positions on the mean model of the PDM are obtained
through point picking or center calculation (the center of the
vertebra body is computed as the center of four boundary
landmarks along the anterior—posterior direction as shown
in Fig. 3a, while their positions on the fluoroscopic image
are defined through interactive picking (see Fig. 3a and b for
details).

Let us denote those landmarks defined on the mean model
of the PDM, i.e., the vertebra body center, the center of the

Fig. 3 Definition of initialization landmarks. a Landmarks extracted
from the mean model of the PDM and b landmarks extracted from the

fluoroscopic images
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top surface of the vertebra body, the center of the bottom
surface of the vertebra body, and the center of the spinal
process tip, as vI{,[ean, vl%,[ean, vﬁ,[ean, and vf\‘,[ean, respectively;
and their corresponding landmarks interactively picked from
the fluoroscopic image as v)l(_ray, v%_ray, v%_ray, and v;‘(_ray,
respectively. And for each X-ray landmark, we can calculate
a projection ray emitting from the focal point to the land-

mark. We then calculate the length between Ull\/Iean and Uﬁ/{ean

and denote it as /;;* Using the known image scale, we also

Mean"
calculate the length l)l(’_‘:ay between v)l(_my and v;‘(_ray. Then,
we do:

Data preparation

In this step, we assume that the line connecting the centers
of the vertebra body and the center of the spinal process tip
is parallel to the input fluoroscopic image and is certain dis-
tance away from the imaging plane (in all the experiments
reported in this paper, we used a fixed distance of 100 mm).
Using this assumption and the correspondences between the
landmarks defined in the CT volume and those from the fluo-
roscopic image, we can compute two points ﬁ)l(_ray and ﬁ;‘(_ray
on the projection rays of v;(_ray and v;‘(_ray, respectively (see
Fig. 4a), which satisfy

~1 ~4 1 4 .

vX»ray vX—ray/ / vX—ray vX—ray’ and

gl o Fod 3)
X-ray X-ray | — "X-ray F

where “//” symbol indicates that the two lines are parallel;
F 1is the calibrated distance from the focal point to the imag-
ing plane and d is the assuming distance from the line con-
necting the center of the vertebra body and the center of the
spinal process tip to the imaging plane.

Fig. 4 Iterative (a)
landmark-to-ray registration.
a Schematic view of data
preparation and b schematic
view of finding 3D point pairs
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The current scale s between the mean model and the input
image is then estimated as

1

- -4 1.4
S = |UXray — VX-ray / lMean )

Using s, we scale all landmark positions on the mean model
and denote them as {U4;.,.: i = 1,2, 3, 4}. We then calculate

. =2 -3 o=l =4
the distances from vy, and vy, to the line vy, Vnjean @nd

o204 7314 .
denote it as Iy, and Iy, ", respectively.

Next, we find two points, point ﬁ%_ray on the projection

ray of v%_raywhose distance to the line ’7)1(-ray’7§(-ray is equal

to 1214

. —3 . . 3
Mean » and point UX _ray OD the projection ray of UX-ray

: : -1 —4 : 73,14
whose distance to the line UX ray UX-ray 1S equal to Iy,

A paired-point matching based on {l_)li\/lean; i=1,2,3,4}
and {ﬁ&_ray; i=1,2,3, 4} is used to calculate an updated

scale so and a rigid transformation Th),[(e;y (see Fig. 4a for
details). From now on, we assume that all information defined
in the mean model coordinate frame has been transformed

into the fluoroscopic image coordinate frame using so and
,I:X—ray
Mean

as {0 yeuns i = 1,2, 3,4}

. We denote the transformed mean model landmarks

Iteration

The following steps are iteratively executed until conver-
gence:

e For a point i}li\/lean’ we find a point on the corresponding
projection ray of v;(_ray, which has the shortest distance

to the point ﬁfwean and denote it as ﬁg_my (see Fig. 4b). We
then perform a paired-point matching using the extracted
point pairs to compute a scale § and a rigid transforma-

]:X-ray

tion update ATy,

(b) .
f X—ray
4
Mean
{';1
~7 Mean '"v"3
vMean ~ Ly 4Mm"
~4°* Y
X—ray
vMem: ¢
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e  We update the mean model coordinate frame using § and
A TX—ray

Mean *

In case when the landmark-based PDM initialization can-
not guarantee the convergence of our 2D/3D reconstruction
scheme that will be described below, we do provide an intu-
itive graphical user interface as described in our previous
work [21] to allow fine-tuning of the scale and of the rotation
of the mean model of the PDM with respect to the fluoro-
scopic image. The reasons why we only allow fine-tuning
of the scale and of the rotation are because the scaling and
the translating behavior along the projection direction are
correlated to each other. For details about the graphic user
interface, we refer to our previous work [21].

Statistical shape model-based 2D/3D reconstruction

The estimated scale and the rigid transformation between the
mean model and the input image are then treated as the start-
ing values for the PDM-based 2D/3D reconstruction scheme
[20,21], which depends on an iterative image-to-model
correspondence-establishing algorithm that we introduced
previously [28]. The image-to-model correspondence is
established using a non-rigid 2D point matching process,
which iteratively uses a symmetric injective nearest-neigh-
bor mapping operator and 2D thin-plate splines-based defor-
mation to find a fraction of best matched 2D point pairs
between those contours extracted from the X-ray image
as we described above and the projections of the apparent
contours extracted from the 3D model. The apparent con-
tours of a statistically instantiated 3D model are extracted
using the approach introduced by Hertzmann and Zorin [29].
Previously, we mathematically proved that the proposed non-
rigid 2D point matching process could automatically elimi-
nate the cross-matching event [28], which was defined as the
interactions between the lines linking any matched point pair.
Figure 5a shows the mean mode of the complete-PDM initial-
ized with respect to the input image using the landmark-based
scaled rigid registration, and the apparent contours extracted
from the mean model. An example of building 2D/2D corre-
spondences between the image contours and the projections
of the apparent contours of the mean model as shown in
Fig. 5a is presented in Fig. Sb. The obtained 2D point pairs
are then used to set up a set of 3D point pairs so that we
turn a 2D/3D reconstruction problem to a 3D/3D one. For
details about how the proposed non-rigid 2D point matching
process works and about the mathematic proof of how the
proposed process eliminates the cross-matching event, we
refer to our previous work [28]. In the following, the details
about how to convert the 2D/3D reconstruction problem to
a 3D/3D one and how the latter problem is solved are given
for completeness.

Fig. 5 Screenshots of establishing image-to-model correspondences.
a The apparent contours (yellow dots) of the mean model (dark grey) of
the complete-PDM after the landmark-based initialization and b 2D/2D
correspondences (green lines) between the image contours (white) and
the projections of the apparent contours

Converting a 2D/3D problem to a 3D/3D one

Assume that a set of 2D matched point pairs {(Ap, Ip); b =
0,1,...,n — 1} have been found, where A, is the projec-
tion of a point on the apparent contours of a 3D model that
is instantiated from the PDM and 1 is a point on the image
contours that is matched to Aj; n is the number of point pairs.
The corresponding 3D point pairs are then constructed as fol-
lows (see Fig. 6 for a schematic illustration). For a 2D point
I, one can find a projection ray r, emitting from the focal
point of the X-ray image through the point ;. Additionally,
for its matched point Ap, one knows the associated 3D point
25 on the apparent contours of the model whose projection
onto the image is A,. By computing a point v, on the ray rp,
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Ny

Focal Point

Fig. 6 Schematic illustration of computing 3D point pairs between a
model and the input image from the established 2D/2D correspondences

that has the shortest distance to €25, a 3D point pair (€25, vp)
can be obtained. Combining all these 3D point pairs, one can
establish 2D/3D correspondence between the input image
and a 3D model instantiated from the PDM, and thus convert
a 2D/3D reconstruction problem to a 3D/3D one.

3D/3D reconstruction

As soon as a set of 3D point pairs are available, the prob-
lem of surface reconstruction is then solved optimally in
three sequential stages using the algorithm presented in [28]:
scaled rigid registration, statistical instantiation, and regu-
larized shape deformation.

Scaled rigid registration This is the only stage that is solved
iteratively. In this stage, the scale and the rigid registration
transformation between the mean model of the PDM and
the input images are iteratively determined using an adapted
iterative closest point (ICP) algorithm [30]. The difference
between this algorithm and the traditional ICP algorithm
is that at each iteration, one need to set up a set of new
point pairs using the algorithm for building 2D/3D corre-
spondences [28].

Statistical instantiation Based on the estimated scale and
the pose information from the first stage, one can use
the same correspondence-establishing algorithm to obtain
a set of n 3D point pairs from the input image. Let us
denote the points computed from the image data as v/ =
{vlf = (xl.’, yis z;) :i=0,1,...,n— 1} and call them the
image points. Let us further denote those points on the
mean model of the PDM as X' = {(ij)l. ;0<j<N-1;
i =0,1,...,n— 1} and call them the model points, where
N is the number of points on the mean model, (f( f)i means
that the jth model point X; on the mean model X is the closest
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point to the ith image point v;. The statistical instantiation
is formulated as the minimization of the following joint cost
function [28]:

Ey (X, V., x) = (p+1log@3n)) - E (X, V., x) + E(x);

X=X+ >0 o ok Pr

E(i’,v’,x):(l/n) ) )
35 o = (), + S o me() |

EX) = (1/2)- 377 (@)

where the first term E (X', v/, x) is the likelihood energy term
and the second term E(x) is the prior energy term, used
to constrain the estimated shape to a realistic result. p is a
parameter that controls the relative weighting between these
two terms. px () is the jth tuple (a 3D vector) of the kth shape
basis eigenvector.

To determine {«y}, the cost function is differentiated with
respect to the shape parameters and equated to zero, result-
ing in a linear system of (m—/) unknowns, which can then
be solved with standard methods. To generate the surface
model from the calculated shape parameters, we adopted a
strategy that was introduced in [28], i.e., a cutoff point was
set such that only the first few modes before the cutoff point
and their corresponding shape parameters were used in the
model instantiation.

Regularized shape deformation In this stage, one needs to
first set up the correspondences between the input images
and a statistically instantiated surface model that is obtained
through solving Eq. (5). To keep the same notation, let
us assume that the image points in this stage are v =
{vi=(x/,y/.2});i=0,1,...,0— 1} and that the model
points in this stage are v = {v; = (x;), = (xi, yi. 2i);

i=0,1,...,1— 1}, where [ is the number of the matched
point pairs and (x;); means that the jth model point x; on
the statistically instantiated model x is the closest point to
the ith image point v/. The regularized shape deformation
is described as a regression problem of finding a 3D spa-
tial transform t : %> — 93 that minimizes following cost
function [28],

log(m)
log(31)

-1
EM)=1/0)- > |vj—tw)|* + 7

i=0

L) (6

where 7 > 0 is a parameter controlling the fitting quality
and the regularization constraint; m is the number of training
surface models; t(v) = {t(v;)} are the results of applying the
mapping on the model points and L (t) is a thin-plate splines
(TPS) kernel-based regularization functional defined on the
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Fig. 7 Different stages of the reconstruction process. Left the
smoothed contours; left middle the landmark-based initialization of the
mean model (grey) of the PDM; right middle the reconstructed model

nonlinear mapping t and has following form [28],

L) = [ [ [3(B(t)dxdydz; and
b= () 12(2) < (2 (5

() +2 ()
)

For details about how to solve Eq. (6), I refer to our previous
work [28]. Figure 7 shows different stages of the reconstruc-
tion process, where a scaled surface model of the L2 lumbar
vertebra was reconstructed from a single lateral fluoroscopic
image.

Experimental design

Four single lateral fluoroscopic images of four cadaveric lum-
bar spine segments (one image per cadaveric lumbar spine
segment) were used to validate the present technique. In total,
there were 15 lumbar vertebrae contained in these four spine
segments, but only twelve of them were visible in the four lat-
eral fluoroscopic images (three lumbar vertebrae per segment
per image). Due to the reason that the transverse processes of
all lumbar vertebrae (in total 11 lumbar vertebrae across dif-
ferent lumbar levels) contained in three of the four test lumbar
spine segments were broken, CT-segmentation-based binary
volumes of these 11 lumbar vertebrae with broken transverse
processes were used to construct the broken-vertebra PDM
as described in Sect. “Construction of the statistical shape
models of the lumber vertebrae”. The four lumbar verte-
brae contained in the last spine segment had complete struc-
tures and their CT-segmentation-based binary volumes were
used together with another 35 CT-segmentation-based binary
volumes of lumbar vertebrae to construct the complete-ver-
tebra PDM as presented in Sect. “Construction of the statis-
tical shape models of the lumber vertebrae”. All the binary
volumes of the lumbar vertebrae contained in the test spine
segments were semiautomatically segmented from the asso-
ciated CT datasets using the commercially available software

(white); right the apparent contours (yellow) extracted from the recon-
structed model versus the image contours (white)

package Amira 5.0 (TGS Europe, Paris, France). To eval-
uate the reconstruction accuracy, a surface model derived
from the binary volume of each test lumbar vertebra was
used as the ground truths. As we only reconstructed a scaled
surface model of the lumbar vertebra from each lateral fluo-
roscopic image, we had to first recover the unknown scale
factor of the reconstructed model with respect to the ground
truth surface model (or vice versa) before we could evaluate
the reconstruction accuracy. For this purpose, we proposed
to estimate the unknown scale factor of the reconstructed
models by performing surface-based registrations [30]. After
the registration, the open source tool MESH [31] was used
to compute the distances between the reconstructed surface
models and their associated ground truth surface models,
which were regarded as the reconstruction errors. We adapted
this tool to include the computation of different error statis-
tics. To this end, based on the two PDMs and datasets of the
four cadaver spine segments, we designed and conducted the
following experiments:

e Experiment on evaluating the correspondence-establish-
ing quality of the two PDMs.

e Experiment on evaluating the accuracy of the present
technique in reconstructing the surface models of 9 lum-
bar vertebrae with broken transverse processes.

e Experiment on evaluating the accuracy of the present
technique in reconstructing the surface models of 3 lum-
bar vertebrae with complete structures.

For all experiments, we used an Intel Duo Core 2.4- GHz
laptop with 4 GB of RAM. All programming was done using
Visual C++ 2005 on Windows Vista.

Experiment on evaluating the correspondence-establishing
quality of the two PDMs

In statistical shape analysis, it is important to establish the

correct correspondences, otherwise an inefficient parame-
terization of shape will be determined. It was reported in
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literatures [32,33] that the goodness of the correspondence
could be evaluated directly on the resultant SSM by following
three measures:

e  Model compactness It measures how compact a SSM is.
According to Styner et al. [33], the compactness abil-
ity of a SSM is determined as the cumulative variance
CM) = Zf‘il Ai, where A; = oiz is the ith eigen-
value. C (M) is measured as a function of the number of
shape parameters M. Furthermore, the standard error of
C(M)is determined from the training size m : oc(ym) =
> V2 mA.

e Model generalization It measures the ability of a SSM to
describe instances outside of the training set. More spe-
cifically, the generalization ability of a SSM is measured
using leave-one-out reconstruction. A SSM is built using
all but one member of the training set and then fitted to
the leaved-out example. The accuracy to which the model
can reconstruct the leave-out example is measured. The
generalization ability is measured as a function G (M) of
the number of shape parameters M.

e Model specificity It measures the ability of a SSM to rep-
resent valid instances of the object class. According to
Styner et al. [33], it is defined as the average distance of
uniformly distributed, randomly generated objects in the
model shape space to their nearest member in the train-
ing set. In this work, the number of random samples was
chosen to be 1,000.

Thus, the purpose of this experiment is to evaluate the cor-
respondence-establishing quality of the two PDMs based on
the above three measures.

Experiment on evaluating the accuracy of the present
technique in reconstructing the surface models of 9 lumbar
vertebrae with broken transverse processes

The purpose of this experiment is to evaluate the robustness
and the accuracy of the present technique in reconstructing
the surface models of 9 lumbar vertebrae (1 L1 level vertebra,
3 L2 level vertebra, 3 L3 level vertebra, and 2 L4 level verte-
bra) with broken transverse processes. To evaluate the accu-
racy, two different surface-based matching techniques, i.e.,
a surface-based anisotropically scaled rigid registration and
a surface-based isotropically scaled rigid registration, were
used to recover the unknown scale factor of the reconstructed
surface mode with respect to its associated ground truth that
was derived from a CT-reconstruction technique. Due to the
reason that the broken-vertebra PDM was constructed from
the CT-segmentation-based binary volumes of the test verte-
brae, we designed two studies to evaluate the robustness and
the accuracy of the present technique. The first study was
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called the leave-all-in study where all 11 aligned training sur-
face models were used to construct the broken-vertebra PDM
that was then used as the prior information to reconstruct the
surface model of each test lumbar vertebra. Different from the
first study, the second study was a leave-one-out study where
the aligned training surface model corresponding to the cur-
rent test vertebra was removed from the training database.
A broken-vertebra PDM constructed from the leave-one-out
training database was then used as the prior information to
reconstruct the surface model of the left-out test vertebra.

Experiment on evaluating the accuracy of the present
technique in reconstructing the surface models of 3 lumbar
vertebrae with complete structures

This experiment was designed to evaluate the robustness and
the accuracy of the present technique in reconstructing the
surface models of lumbar vertebrae with complete structures.
Unlike the situation in the last experiment, where all 9 test
lumbar vertebrae had broken transverse processes, here all 3
test lumbar vertebrae (1 L1 level vertebra, 1 L2 level verte-
bra, and 1 L3 level vertebra) had complete structures. Similar
to the situation in the last experiment, we also used the two
different surface-based registration techniques to estimate
the unknown scale factors between the reconstructed surface
models and the associated ground truth surface models. Two
studies were conducted in this experiment to evaluate the
robustness and the accuracy of the present technique. Due to
the reason that all 4 aligned training surface models of the
lumbar vertebrae contained in the test spine segment were
part of the training database for constructing the complete-
vertebra PDM, we named the first study as the leave-all-in
study. In this study, each time the complete-vertebra PDM
as described in Sect. “Construction of the statistical shape
models of the lumber vertebrae” was used together with the
single lateral fluoroscopic image of the test spine segment
to reconstruct a scaled surface model of a test vertebra. In
the second study, all 4 aligned training surface models cor-
responding to the lumbar vertebrae in the test spine segment
were removed from the training database, and a complete-
vertebra PDM constructed from the rest 35 training surface
models was used to reconstruct a scaled surface model of
each test vertebra. We thus called the second study as the
leave-four-out study.

Results

Results of the experiment on evaluating the
correspondence-establishing quality of the two PDMs

Using the three measures, we evaluated the correspondence-
establishing quality of both PDMs. The results are presented
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in Fig. 8. Our compactness study showed that about 97% total
amount of variations of the complete-vertebra PDM were
explained by the first 20 eigenmodes and that it required the
first 7 eigenmodes to describe the same amount of varia-
tions of the broken-vertebra PDM. Based on these results, in
the following two experiments, we chose the cutoff point for
the complete-vertebra PDM as 20 and the cutoff point for the

broken-vertebra PDM as 7. The generalization study showed
that both PDMs had the capability to represent unseen
instance of the associated object class, while the specificity
study demonstrated that both PDMs could generate instances
of the associated object class in a reasonably good accuracy
(i.e., all mean absolute distances in both specificity study are
smaller than 1.5 mm).
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Fig. 8 Evaluating the correspondence-establishing quality of the two
PDMs using three measures. Left column the complete-vertebra PDM;
and right column the broken-vertebra PDM. At each column, fop row

the compactness measures; middle row the generalization measures;
and bottom row the specificity measures
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Results of the experiment on evaluating the accuracy of the
present technique in reconstructing the surface models
of 9 lumbar vertebrae with broken transverse processes

In both studies, the present technique could successfully
reconstruct 3D surface models of all 9 test lumbar verte-
brae with broken transverse processes. On average, it took
the present technique about 90 s to finish the computation.
The average errors of reconstructing surface models of all
9 vertebrae with broken transverse processes in both studies
are shown in Table 1. A more detailed box-plot description of
the reconstruction errors in both studies is shown in Fig. 9.

When the surface-based anisotropically scaled rigid regis-
tration was used to recover the unknown scale factors of the
reconstructed surface models, an average mean reconstruc-
tion error of 0.9 mm (range: from 0.7 to 1.2 mm) was found
for the leave-all-in study and an average mean reconstruc-
tion error of 1.0mm (range: from 0.8 to 1.3 mm) was found
for the leave-one-out study. In contrast, when the surface-
based isotropically scaled rigid registration was used, the
average mean reconstruction error of the leave-all-in study
was changed to 1.1 mm (range: 0.9—1.5 mm) and the average
mean reconstruction error of the leave-one-out study was
changed to 1.2mm (range: 0.9-1.6 mm).

Table 1 Errors of reconstructing the surface models of the 9 lumbar vertebre with broken transverse processes

Vertebra

Cadaver_2_L.2 Cadaver_2_L3 Cadaver_2_I.4 Cadaver_3_LI1

Cadaver_3_L.2 Cadaver_3_L3 Cadaver_4_1.2 Cadaver_4_L3 Cadaver_4_L4

Leave-all-in study, when the anisotropically scaled rigid registration was used to recover the scale

Errors (mm) 0.7 £0.7 1.1£1.1 1.0£1.1 0.9+0.7

Leave-one-out study, when the anisotropically scaled rigid registration was used to recover the scale

Errors (mm) 0.8 £0.7 13+14 1.1£1.2 1.0£0.8

Leave-all-in study, when the isotropically scaled rigid registration was used to recover the scale

Errors (mm) 0.9 £0.7 1.0£1.0 1.1£1.0 14+£1.0

Leave-one-out study, when the isotropically scaled rigid registration was used to recover the scale

Errors (mm) 1.04+0.8 1.3+1.2 1.2+1.0 1.4+1.1

0.8£0.6 0.7£0.7 0.8+£0.9 09+1.0 12+1.0
0.8£0.7 0.8£0.8 09+£1.0 1.0£1.1 1.3+1.1
1.1+£1.0 1.0£1.0 09+£09 1.0£1.1 1.5+13
13+1.2 L1+1.1 09+0.9 1.1£1.3 1.6+1.4
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Fig. 9 Errors of reconstructing surface models of all 9 lumbar ver-
tebrae with broken transverse processes when different surface-based
matching techniques were used to recover the unknown scale factors
between the reconstruct surface models and the associated ground
truths. Top row when a surface-based anisotropically scaled rigid

@ Springer

o
FNge

Reconstruction Error (mm)
N

o
oo~
L
{F

N7 N
J Y
@' @'
o @ &
(<4 o (<4

© 5% Percentile Error - 95% Percentile Error x Mean Error
— Median Error * RMS Error

© 5% Percentile Error - 95% Percentile Error x Mean Error ‘

— Median Error * RMS Error
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shows results of the leave-all-in study, while the right column shows
the results of the leave-one-out study
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Results of the experiment on evaluating the accuracy of the
present technique in reconstructing the surface models of 3
lumbar vertebrae with complete structures

In both studies, the present technique could successfully
reconstruct 3D surface models of all 3 test lumbar verte-
brae with complete structures. On average, it took the pres-
ent technique about 105 s to finish the computation. The
errors of reconstructing surface models of all 3 lumbar ver-
tebrae with complete structures in both studies are shown in
Table 2. A more detailed box-plot description of the recon-
struction errors in both studies is shown in Fig. 10. When
the surface-based anisotropically scaled rigid registration
was used to recover the unknown scale factors, an average
mean reconstruction error of 0.77 mm (range: from 0.7 to

0.9 mm) was found for the leave-all-in study and an average
mean reconstruction error of 0.83 mm (range: from 0.8 to
0.9 mm) was found for the leave-four-out study. In contrast,
when the surface-based isotropically scaled rigid registra-
tion was used, the average mean reconstruction error of the
leave-all-in study was changed to 1.03mm (range: 0.9 mm
to 1.3 mm) and the average mean reconstruction error of the
leave-four-out study was changed to 1.17 mm (range: 1.0 mm
to 1.4mm).

Figure 11 shows an example of estimating the surface
model reconstruction accuracy, where the ground truth model
with a color-coded error distribution (middle column) is dis-
played together with the reconstructed surface model (right
column) after a surface-based anisotropically scaled rigid
registration was used to recover the unknown scale factor.

Table 2 Errors of

reconstructing the surface Vertebra

Cadaver_1_L1

Cadaver_1_1.2 Cadaver_1_L3

models of the 3 lumbar vertebrae
with complete structures

Errors (mm) 0.9 £0.7

Leave-all-in study, when the anisotropically scaled rigid registration was used to recover the scale
0.7£0.7

0.7£0.6

Leave-one-out study, when the anisotropically scaled rigid registration was used to recover the scale

Errors (mm) 0.9 £0.8

0.8£0.8

0.8 £0.7

Leave-all-in study, when the isotropically scaled rigid registration was used to recover the scale

Errors (mm) 1.341.0

0.9£0.8

0.9£0.7

Leave-one-out study, when the isotropically scaled rigid registration was used to recover the scale

1.0+£0.9

1.1£0.8

Errors (mm) 1.4+ 1.1
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Fig. 10 Errors of reconstructing surface models of all 3 lumbar ver-
tebrae with complete structures when different surface-based matching
techniques were used to recover the unknown scale factors between
the reconstructed surface models and the associated ground truths. Top
row when a surface-based anisotropically scaled rigid registration was

used; and bottom row when a surface-based isotropically scaled rigid
registration was used. In both rows, the left column shows results of
the leave-all-in study, while the right column shows the results of the
leave-four-out study
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Fig. 11 Color-coded
reconstruction error distribution.
Left column: error bar; middle
column: the ground truth model
with the color-coded error
distributions; right column the
reconstructed model after a
surface-based iterative affine
registration was used to recover
the unknown scale factor

Discussions and conclusions

In this paper, we presented a single image—based 2D/3D
reconstruction technique and showed its application to recon-
struct a scaled, patient-specific 3D surface model of the
lumbar vertebra from a single lateral fluoroscopic image.
This single image—based 2D/3D reconstruction technique is
based on a hybrid 2D/3D deformable registration process
combining a landmark-to-ray registration with a SSM-based
2D/3D reconstruction. After evaluating the correspondence-
establishing quality of the two PDMs used in the present
work, we validated the present 2D/3D reconstruction tech-
nique by designing and conducting two additional experi-
ments. The first one focused on evaluating the robustness
and the accuracy of the present technique in reconstruct-
ing scaled surface models of 9 lumbar vertebrae with bro-
ken processes, while the second one aimed at evaluating the
robustness and the accuracy of the present technique in recon-
structing scaled surface models of 3 lumbar vertebrae with
complete structures. In each experiment, we designed and
conducted two studies, and in both studies, the present tech-
nique could successfully reconstruct scaled surface models of
all test lumbar vertebrae. To evaluate the overall reconstruc-
tion accuracy, we investigated two different surface-based
registration techniques to recover the unknown scale factors
between the reconstructed surface models and their associ-
ated ground truths: the surface-based anisotropically scaled
rigid registration and the surface-based isotropically scaled
rigid registration. Our experimental results demonstrated that
the present technique can reconstruct scaled surface models
of all 12 test lumbar vertebrae in a reasonably good accu-
racy, i.e., the mean reconstruction errors were found to be
in the range of 0.7-1.6 mm. The overall reconstruction accu-
racy was slightly different when different surface-based reg-
istration techniques were used to estimate the unknown scale
factors. It was also reasonable to observe that in both exper-
iments, the results of the leave-all-in study were better than
the other study. Such an observation indicated that the more
shape variations that we integrated, the more accurate the
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present technique was. Another interesting finding was that
the average accuracy of the experiment on reconstructing 3
lumbar vertebrae with complete structures was better than
that of the experiment on reconstructing 9 lumbar vertebrae
with broken transverse processes. One possible explanation
for this finding is the differences in the number of training
models used to construct the statistical shape models that
were then used in the two different experiments for 2D/3D
reconstructions.

It is worth noting that there are differences between
the present technique and the single image—based 2D/3D
reconstruction technique that we introduced previously [22].
Although both techniques can reconstruct a scaled, patient-
specific surface model of a target structure from a single
X-ray image and both of them depend on the image-to-model
correspondence-establishing algorithm that we introduced
previously [28], they are different from each other on how
the image contours are extracted and on how the statistical
shape model is constructed. The image contours in the pres-
ent technique are extracted by a semiautomatic segmentation
tool based on the Livewire algorithm. Such a semiautomatic
segmentation tool effectively exploits the synergy between a
human operator who is superior in object recognition and the
Livewire algorithm that is better in exact object delineation.
Thus, it takes fewer labors and requires less user attention
than the fully manual segmentation tool used in our previ-
ous works [20-22]. The local cost function that we designed
for the Livewire algorithm, which is based on the multiscale
Canny edge detector [27], can seamlessly handle both strong
and weak edges in the fluoroscopic image due to its multiscale
characteristic. Furthermore, unlike in our previous work [22],
where the statistical shape model was constructed from a set
of training surface models of one anatomical structure (the
pelvis), here the statistical shape models were constructed
from a set of training surface models of lumbar vertebrae
across all five levels. The results from our experiment on
evaluating the correspondence-establishing quality demon-
strated the efficacy of the across-level lumbar vertebral SSMs
used in the present study.
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The differences between the present technique and other
works on reconstructing a patient-specific surface model of
the vertebra should be discussed. Most of existing works
[6-11,14], except those introduced by Benameur et al. [12,
13], focused on the reconstruction of a surface model of the
complete spine from two or more X-ray radiographs, while in
the present work, we were only interested in reconstructing
a surface model of the lumbar vertebra due to our targeted
application, i.e., the spine kinematics analysis. The main dif-
ference between the present technique and the methods intro-
duced by Benameur et al. [12,13] lies in the optimization
techniques that were used to reconstruct a patient-specific
surface model. More specifically, in Benameur et al. [12, 13],
a PDM of scoliotic vertebrae was fitted to two calibrated
X-ray radiographs by simultaneously optimizing both the
shape and the pose parameters, while in the present work,
we sequentially optimized the shape and the pose param-
eters. Furthermore, in the present work, the surface model
obtained after the statistical instantiation stage was further
refined by the regularized shape deformation algorithm. The
advantages of integrating this additional stage into the present
technique over other existing attempts to instantiate a patient-
specific surface model from a statistical shape model were
explained in detail in our previous work [28]. Briefly speak-
ing, such integration enables the present technique to handle
more complicated shape variation of any future instance [28].

While accurate, the present approach has limitations
related with the number of training models used to construct
the statistical shape models and the number of validation
cases. The accuracy of the present approach depends not only
upon how accurate the image-to-model correspondences
can be established but also upon how well the unknown,
patient-specific shape variation can be covered by the
statistical shape model that is constructed from a fixed
number of training models. Although the image-to-model
correspondence-establishing process has been thoroughly
validated in our previous works [20-22,28] as well as in
the present work, both statistical shape models used in the
present study were constructed from a limited number of
training lumbar vertebral models (39 for the complete-verte-
bra PDM and 11 for the broken-vertebra PDM). Furthermore,
the validation of the present approach, though successful, was
only conducted on datasets of 12 lumbar vertebrae. Thus, the
results reported in this paper are regarded still preliminary,
and more thorough validation study is needed before it can
be transferred to a routine usage. Nonetheless, the experi-
ment results from the present study demonstrate the efficacy
of the present approach, and the prediction power of the pres-
ent approach can be enhanced in the future by incorporating
more training models into the statistical shape model and/or
by constructing a patient-oriented statistical shape model.

In summary, this paper presented a statistical shape
model-based technique to reconstruct a scaled, patient-

specific surface model of a lumbar vertebra from a single
lateral fluoroscopic image. Future work will focus on apply-
ing the reconstructed model for 3D kinematic analysis of
lumbar vertebrae. The developed method also holds poten-
tials in surgical planning and navigation applications.
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