Skip to main content

Advertisement

Log in

Determination of the curling behavior of a preformed cochlear implant electrode array

  • Original Article
  • Published:
International Journal of Computer Assisted Radiology and Surgery Aims and scope Submit manuscript

Abstract

Purpose

Accurate insertion of a cochlear implant electrode array into the cochlea’s helical shape is a crucial step for residual hearing preservation. In image-guided surgery, especially using an automated insertion tool, the overall accuracy of the operative procedure can be improved by adapting the electrode array’s intracochlear movement to the individual cochlear shape.

Methods

The curling characteristic of a commercially available state-of-the-art preformed electrode array (Cochlear Ltd. Contour AdvanceTM Electrode Array) was determined using an image-processing algorithm to detect its shape in series of images. An automatic image-processing procedure was developed using Matlab and the Image Processing Toolbox (MathWorks, Natick, Massachusetts, USA) to determine the complete curvature of the electrode array by identifying the 22 platinum contacts of the electrode. A logarithmic spiral was used for a comprehensive mathematical description of the shape of the electrode array. A fitting algorithm for nonlinear least-squares problems was used to provide a complete mathematical description of the electrode array. The system was tested for curling behavior as a function of stylet extraction using nine Contour Advance Research Electrodes (RE) and additionally for nine Contour Advance Practice Electrodes (PE).

Results

All arrays show a typical pattern of curling with adequate predictability after the first 2 or 3 millimeters of stylet extraction. Although non-negligible variations in the overall curling behavior were detected, the electrode arrays show a characteristic movement due to the stylet extraction and only vary minimally after this initial phase.

Conclusion

These results indicate that the risk of intracochlear trauma can be reduced if the specific curling behavior of the electrode carrier is incorporated into the insertion algorithm. Furthermore, the determination of the curling behavior is an essential step in computer-aided cochlear implant electrode development. Experimental data are required for accurate evaluation of the simulation model.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. Roland JT (2005) Cochlear implant electrode insertion. Oper Tech Otolaryngol 16: 86–92

    Article  Google Scholar 

  2. von Ilberg C, Kiefer J, Tillein J et al (1999) Electric-acoustic stimulation of the auditory system. New technology for severe hearing loss. J Otorhinolaryngol Relat Spec 61(6): 334–340

    Google Scholar 

  3. Friedland DR, Runge-Samuelson C (2009) Soft cochlear implantation: rationale for the surgical approach. Trends Amplif 13: 124–138

    Article  PubMed  Google Scholar 

  4. Lenarz T, Stöver T, Buechner A et al (2009) Hearing conservation surgery using the hybrid-L electrode. Results from the first clinical trial at the medical university of hannover. Audiol Neurootol 14(1): 22–31

    Article  PubMed  Google Scholar 

  5. Lenarz T, Stöver T, Buechner A et al (2006) Temporal bone results and hearing preservation with a new straight electrode. Audiol Neurootol 11(1): 34–41

    Article  PubMed  Google Scholar 

  6. Praetorius M, Staecker H, Plinkert PK (2009) Surgical technique in cochlear implantation. HNO 57: 663–670

    Article  PubMed  CAS  Google Scholar 

  7. Büchner A, Schüssler M, Battmer RD et al (2009) Impact of low-frequency hearing. Audiol Neurootol 14(1): 8–13

    Article  PubMed  Google Scholar 

  8. Laszig R, Aschendorff A, Schipper J et al (2004) Current developments in cochlear implantation. HNO 52: 357–362

    Article  PubMed  CAS  Google Scholar 

  9. Schipper J, Klenzner T, Aschendorff A et al (2004) Navigation-controlled cochleostomy. Is an improvement in the quality of results for cochlear implant surgery possible?. HNO 52: 329–335

    Article  PubMed  CAS  Google Scholar 

  10. Schipper J, Aschendorff A, Arapakis I et al (2004) Navigation as a quality management tool in cochlear implant surgery. J Laryngol Otol 118: 764–770

    PubMed  Google Scholar 

  11. Bumm K, Federspil PA, Klenzner T et al (2008) Update on computer- and mechatronic-assisted head and neck surgery in Germany. HNO 56: 908–915

    Article  PubMed  CAS  Google Scholar 

  12. Majdani O, Leinung M, Heermann R (2006) Developments in navigation technology. HNO 54: 829–832

    Article  PubMed  CAS  Google Scholar 

  13. Coulson CJ, Reid AP, Proops DW et al (2007) ENT challenges at the small scale. Int J Med Robot 3: 91–96

    PubMed  CAS  Google Scholar 

  14. Labadie RF, Noble JH, Dawant BM et al (2008) Clinical validation of percutaneous cochlear implant surgery: initial report. Laryngoscope 118: 1031–1039

    Article  PubMed  Google Scholar 

  15. Labadie RF, Balachandran R, Mitchell JE et al (2009) Clinical validation study of percutaneous cochlear access using patient-customized microstereotactic frames. Otol Neurotol 31: 94–99

    Article  Google Scholar 

  16. Warren FM, Balachandran R, Fitzpatrick JM et al (2007) Percutaneous cochlear access using bone-mounted, customized drill guides: demonstration of concept in vitro. Otol Neurotol 28: 325–329

    Article  PubMed  Google Scholar 

  17. Labadie RF, Chodhury P, Cetinkaya E et al (2005) Minimally invasive, image-guided, facial-recess approach to the middle ear: demonstration of the concept of percutaneous cochlear access in vitro. Otol Neurotol 26: 557–562

    Article  PubMed  Google Scholar 

  18. Labadie RF, Shah RJ, Harris SS et al (2005) In vitro assessment of image-guided otologic surgery: submillimeter accuracy within the region of the temporal bone. Otolaryngol: Head Neck Surg 132: 435–442

    Article  Google Scholar 

  19. Wanna GB, Balachandran R, Majdani O et al (2009) Percutaneous access to the petrous apex in vitro using customized micro-stereotactic frames based on image-guided surgical technology. Acta Otolaryngol. Aug 25:1–6 [Epub ahead of print]

    Google Scholar 

  20. Labadie RF, Mitchell J, Balachandran R et al (2009) Customized, rapid-production microstereotactic table for surgical targeting: description of concept and in vitro validation. Int J Comput Assist Radiol Surg 4: 273–280

    Article  PubMed  Google Scholar 

  21. Majdani O, Bartling SH, Rodt T et al (2007) Volume computed tomography for navigated procedures at the lateral skull base—proof of feasibility on phantom and human temporal bone specimens. GMS CURAC 2007 2(1): 06

    Google Scholar 

  22. Majdani O, Bartling S, Leinung M et al (2008) A true minimally invasive approach for cochlear implantation: high accuracy in cranial base navigation through flat-panel-based volume computed tomography. Otol Neurotol 29: 120–123

    Article  PubMed  Google Scholar 

  23. Majdani O, Bartling SH, Leinung M et al (2008) Image-guided minimal-invasive cochlear implantation–experiments on cadavers [article in german]. Laryngorhinootologie 87: 18–22

    Article  PubMed  CAS  Google Scholar 

  24. Baron S, Eilers H, Hornung O et al (2006) Conception of a robot assisted cochleostomy: first experimental results. In: Proceedings of the 7th international workshop on research and education in mechatronics (REM 2006), Stockholm, Schweden

  25. Eilers H, Baron S, Ortmaier T et al (2009) Navigated, robot assisted drilling of a minimally invasive cochlear access. In: Proceedings of the 2009 IEEE international conference on mechatronics, Málaga, Spain

  26. Leinung M, Heimann B, Bartling S et al (2007) Robotic-guided minimally-invasive cochleostomy: first results. GMS CURAC 2(1): 05

    Google Scholar 

  27. Majdani O, Rau TS, Baron S et al (2009) A robot-guided minimally invasive approach for cochlear implant surgery: preliminary results of a temporal bone study. Int J Comput Assist Radiol Surg 4: 475–486

    Article  PubMed  Google Scholar 

  28. Brett PN, Taylor RP, Proops D et al (2007) A surgical robot for cochleostomy. Conf Proc IEEE Eng Med Biol Soc 2007: 1229–1232

    PubMed  CAS  Google Scholar 

  29. Coulson CJ, Taylor RP, Reid AP et al (2008) An autonomous surgical robot for drilling a cochleostomy: preliminary porcine trial. Clin Otolaryngol 33: 343–347

    Article  PubMed  CAS  Google Scholar 

  30. Brett PN, Taylor RP, Proops D et al (2008) An autonomous surgical robot applied in practice conference. In: Proceedings of 15th international conference on mechatronics and machine vision in practice, pp 173–176

  31. Klenzner T, Ngan CC, Knapp FB et al (2009) New strategies for high precision surgery of the temporal bone using a robotic approach for cochlear implantation. Eur Arch Otorhinolaryngol 266: 955–960

    Article  PubMed  Google Scholar 

  32. Xia T, Baird C, Jallo G et al (2008) An integrated system for planning, navigation and robotic assistance for skull base surgery. Int J Med Robot 4: 321–330

    PubMed  Google Scholar 

  33. Hussong A, Rau T, Eilers H et al (2008) Conception and design of an automated insertion tool for cochlear implants. Conf Proc IEEE Eng Med Biol Soc 2008: 5593–5596

    PubMed  Google Scholar 

  34. Hussong A, Rau TS, Ortmaier T et al (2010) An automated insertion tool for cochlear implants: another step towards atraumatic cochlear implant surgery. Int J Comput Assist Radiol Surg 5: 163–171

    Article  PubMed  Google Scholar 

  35. Majdani O, Schurzig D, Hussong A et al. (2009) Force measurement of insertion of cochlear implant electrode arrays in vitro: comparison of surgeon to automated insertion tool. Acta Otolaryngol. May 29:1–6 [Epub ahead of print]

    Google Scholar 

  36. Rau TS, Hussong A, Leinung M et al (2010) Automated insertion of preformed cochlear implant electrodes: evaluation of curling behaviour and insertion forces on an artificial cochlear model. Int J Comput Assist Radiol Surg 5: 173–181

    Article  PubMed  Google Scholar 

  37. Lenarz T (2006) Cochlear implantation—the hannover guideline, Tech. Rep.. Endo-Press, Tuttlingen

    Google Scholar 

  38. Cohen NL, Roland JT, Fishman A (2002) Surgical technique for the nucleus contour cochlear implant. Ear Hear 23: 59S–66S

    Article  PubMed  Google Scholar 

  39. Zhang J, Xu K, Simaan N et al (2006) A pilot study of robot-assisted cochlear implant surgery using steerable electrode arrays. Med Image Comput Comput-Assist Interv—MICCAI 2006 9(1): 33–40

    Article  Google Scholar 

  40. Zhang J, Wei W, Manolidis S et al (2008) Path planning and workspace determination for robot-assisted insertion of steerable electrode arrays for cochlear implant surgery. Med Image Comput Comput-Assist Interv—MICCAI 2008, Part II: 695–700

  41. Zhang J, Roland JT, Manolidis S et al (2009) Optimal path planning for robotic insertion of steerable electrode arrays in cochlear implant surgery. J Med Devices 3: 1–10

    Article  CAS  Google Scholar 

  42. Chen BK, Clark GM, Jones R (2003) Evaluation of trajectories and contact pressures for the straight nucleus cochlear implant electrode array—a two-dimensional application of finite element analysis. Med Eng Phys 25: 141–147

    Article  PubMed  CAS  Google Scholar 

  43. Kha HN, Chen BK, Clark GM (2007) 3D finite element analyses of insertion of the Nucleus standard straight and the contour electrode arrays into the human cochlea. J Biomech 40(12): 2796–2805

    Article  PubMed  CAS  Google Scholar 

  44. Yoo SK, Wang G, Rubinstein JT et al (2000) Three-dimensional geometric modeling of the cochlea using helico-spiral approximation. IEEE Trans Biomed Eng 47: 1392–1402

    Article  PubMed  CAS  Google Scholar 

  45. Todd CA, Naghdy F, Svehla M (2007) Force application during cochlear implant insertion: an analysis for improvement of surgeon technique. IEEE Biomed Eng 54: 1247–1255

    Article  Google Scholar 

  46. Rebscher SJ, Heilmann M, Bruszewski W et al (1999) Strategies to improve electrode positioning and safety in cochlear implants. IEEE Trans Biomed Eng 46: 340–352

    Article  PubMed  CAS  Google Scholar 

  47. Adunka OF, Kiefer J, Unkelbach MH et al (2004) Development and evaluation of an improved cochlear implant electrode design for electric acoustic stimulation. Laryngoscope 114: 1237–1241

    Article  PubMed  Google Scholar 

  48. Adunka OF, Kiefer J (2006) Impact of electrode insertion depth on intracochlear trauma. Otolaryngol: Head Neck Surg 135: 374–382

    Article  Google Scholar 

  49. Kha H, Chen B, Clark G et al (2006) Finite element modeling of final placement and insertion depth of new cochlear implant electrode array embedded with nitinol shape memory alloy actuators. In: Proceedings of the 2006 international conference on modeling, simulation & visualizatin methods, Las Vegas, USA, pp 27–32

  50. Rau TS, Leinung M, Kardas D et al (2007) Simulation als Basis optimierter cochlear implant-operation. In: Proceedings ANSYS conference & 25th CADFEM user meeting 2007, 21.–23.11. Congress Center Dresden, Germany

  51. Kardas D, Rust W, Polley A et al (2007) Turning up the volume. The use of shape memory alloys offers the promise of better functioning in cochlear implants. ANSYS Advant 1(2): 4–5

    Google Scholar 

  52. Zentner L, Keskeny J, Westhofen M et al (2006) Hydraulic actuation for the navigation of cochlear implant. In: 10th international conference on new actuators, Bremen, Germany

  53. Arcand B, Bhatti P, Butala N et al (2004) Active positioning device for a perimodiolar cochlear electrode array. Microsystem Technol 10: 478–483

    Article  Google Scholar 

  54. Arcand B, Shyamsunder S et al (2007) A fluid actuator for thin-film electrodes. J Med Devices 1: 70–77

    Article  Google Scholar 

  55. Bell TE, Wise KD, Anderson DJ (1998) A flexible micromachined electrode array for a cochlear prosthesis. Sens Actuators A 66: 63–69

    Article  Google Scholar 

  56. Bhatti PT, Wise KD (2006) A 32-site 4-channel high-density electrode array for a cochlear prosthesis. IEEE J Solid-State Circuits 41(12): 2965–2973

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Thomas S. Rau.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Rau, T.S., Majdani, O., Hussong, A. et al. Determination of the curling behavior of a preformed cochlear implant electrode array. Int J CARS 6, 421–433 (2011). https://doi.org/10.1007/s11548-010-0520-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11548-010-0520-x

Keywords

Navigation