Skip to main content
Log in

Web-based bone age assessment by content-based image retrieval for case-based reasoning

  • Original Article
  • Published:
International Journal of Computer Assisted Radiology and Surgery Aims and scope Submit manuscript

Abstract

Purpose

Maturity estimation by radiological bone age assessment (BAA) is a frequent task for pediatric radiologists. Following Greulich and Pyle, all hand bones are compared with a standard atlas, or a subset of bones is examined according to Tanner and Whitehouse. We support BAA comparing the epiphyses of a current case to similar cases with validated bone age by content-based image retrieval (CBIR).

Methods

A web-based prototype case-based retrieval system for BAA was developed and is publicly available. Hand radiographs from the USC database or user uploads may be retrieved by image-based query. The ten best matching cases for each epiphysis are retrieved by CBIR and displayed with their BAA, similarity score, and the derived age estimate. The similarity is approximated by cross-correlation. The USC hand database includes 1,101 cases comprising four ethnic groups of both genders between zero and 18 years of chronological age with radiographs and two annotated BAA. The USC image data have been enriched by marking the epiphyseal centers between metacarpals and distal phalanges.

Results

Leave-one-out experiments yielded a mean error rate of 0.99 years and a standard deviation of 0.76 years in comparison with the mean USC–BAA. The research prototype enables radiologists to judge their agreement based on similarity of retrieved cases and the derived age.

Conclusions

CBIR provides support to the radiologist with a second opinion for BAA. Self-explanatory web applications can be established to support workflow integration. Enhancements in similarity computation and interface usability may further improve the system.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Abbreviations

BAA:

Bone age assessment

CAD:

Computer-aided diagnosis

CARS:

Computer-assisted radiology and surgery

CBIR:

Content-based image retrieval

CBR:

Case-based reasoning

CLEF:

Cross-language evaluation forum

CCF:

Cross-correlation function

eROI:

Epiphyseal region of interest

GUI:

Graphical user interface

GP:

Greulich and Pyle

IDM:

Iterative distortion model

ImageCLEF:

Image retrieval track of the cross-language evaluation forum

IRMA:

Image retrieval in medical applications

PACS:

Picture archiving and communication system

QBE:

Query-by-example

RIS:

Radiological information system

ROI:

Region of interest

TW2/TW3:

Bone age ratings by Tanner and Whitehouse

USC:

University of Southern California

References

  1. Gilsanz V, Ratib O (2005) Hand bone age. a digital atlas of skeletal maturity. Springer, Berlin

    Google Scholar 

  2. Thodberg HH (2009) An automated method for determination of bone age. J Clin Endocrinol Metabol 94(7): 2239–2244

    Article  CAS  Google Scholar 

  3. Schmeling A, Lockemann U, Olze A et al (2004) Forensische Altersdiagnostik bei Jugendlichen und jungen Erwachsenen. Dtsch Arztebl 101(18)

  4. Schmitt R, Lanz U (2008) Diagnostic imaging of the hand. Thieme Publishing Group, Stuttgart, p p 148

    Google Scholar 

  5. Greulich WW, Pyle SI (1971) Radiographic atlas of skeletal development of hand wrist. Stanford University Press, California

    Google Scholar 

  6. Tanner JM, Healy MRJ, Goldstein H, Cameron N (2001) Assessment of skeletal maturity and prediction of adult height (TW3). WB Saunders, London

    Google Scholar 

  7. Wastl S, Dickhaus H (1996) Computerized classification of maturity stages of hand bones of children and juveniles. Engineering in Medicine and Biology Society, 1996. Bridging Disciplines for Biomedicine. In: Proceedings of 18th annual international conference IEEE, vol 3, pp 1155–1156

  8. Martin-Fernandez MA, Martin-Fernandez M, Alberola-Lopez C (2003) Automatic bone age assessment: a registration approach. In: Proceedings of SPIE, vol 5032, pp 1765–1776

  9. Pietka E, Gertych A, Pospiech S et al (2001) Computer-assisted bone age assessment: Image preprocessing and epiphyseal/metaphyseal ROI extraction. IEEE Trans Med Imaging 20(8): 715–729

    Article  PubMed  CAS  Google Scholar 

  10. Park KH, Lee JM, Kim WY (2007) Robust epiphyseal extraction method based on horizontal profile analysis of finger images. In: Proceedings of ISITC, pp 278–282

  11. Gertych A, Zhang A, Sayre J et al (2007) Bone age assessment of children using a digital hand atlas. Comput Med Imaging Graph 31(4–5): 322–331

    Article  PubMed  Google Scholar 

  12. Thodberg HH, Kreiborg S, Juul A, Pedersen KD (2009) The BoneXpert method for automated determination of skeletal maturity. IEEE Trans Med Imaging 28(1): 52–66

    Article  PubMed  Google Scholar 

  13. Tanner JM, Gibbons RD (1994) Automatic bone age measurement using computerized image analysis. J Ped Endocrinol 7: 141–145

    Article  CAS  Google Scholar 

  14. Brunk M, Ruppertshofen H, Schmidt S, Beyerlein P, Schramm H (2011) Bone age classification using the discriminative generalized hough transform. In: Handels H, Ehrhardt J, Deserno TM, Meinzer HP, Tolxdorff T (eds) Bildverarbeitung für die Medizin. Springer, Berlin, pp 284–288

    Google Scholar 

  15. Olabarriaga SD, Smeulders AWM (1997) Setting the mind for intelligent interactive segmentation: overview, requirements, and framework. In: Proceedings of IPMI, pp 417–422

  16. Deserno TM (ed) (2011) Biomedical image processing, Chapter 11, Model-based segmentation. Springer, Berlin, pp 277–300. ISBN 978-3-642-15815-5

  17. Aamodt A, Plaza E (1994) Case-based reasoning: foundational issues, methodological variations, and system approaches. AI Commun 7(1): 39–59

    Google Scholar 

  18. Muller H, Michoux N, Bandon D, Geissbuhler A (2004) A review of content-based image retrieval systems in medical applications. Clinical benefits and future directions. Int J Med Inform 73(1): 1–23

    Article  PubMed  Google Scholar 

  19. Eakins JP, Graham ME (1999) Content-based image retrieval—a report to the JISC technology applications programme. Technical Report, Institute for Image Data Research, University of Northumbria at Newcastle, http://www.jisc.ac.uk/uploaded_documents/jtap-039.doc Accessed 28 Jan 2010

  20. Berner ES, McGowan JJ (2010) Use of diagnostic decision support systems in medical education. Methods Inf Med 49(4): 412–417

    Article  PubMed  CAS  Google Scholar 

  21. Lehmann TM, Güld MO, Thies C, Fischer B, Spitzer K, Keysers D, Ney H, Kohnen M, Schubert H, Wein BB (2004) Content-based image retrieval in medical applications. Methods Inf Med 43(4): 354–361

    PubMed  CAS  Google Scholar 

  22. Güld MO, Thies C, Fischer B, Lehmann TM (2007) A generic concept for the implementation of medical image retrieval systems. Int J Med Inform 76(2–3): 252–259

    Article  PubMed  Google Scholar 

  23. Güld MO, Thies C, Fischer B, Lehmann TM (2006) Content-based retrieval of medical images by combining global features, Lecturer notes in computer science, vol 4022, pp 702–711

  24. Fischer B, Brosig A, Welter P, Grouls C, Guenther RW, Deserno TM (2010) Content-Based image retrieval applied to bone age assessment. In: Proceedings of SPIE, vol 7624, pp 121–130

  25. Fischer B, Brosig A, Deserno TM, Ott B, Günther RW (2009) Structural scene analysis and content-based image retrieval applied to bone age assessment. In: Proceedings of SPIE, vol 7260, p 041-11

  26. Zhang A (2007) A computer-aided-diagnosis (CAD) method combining phalangeal and carpal bone features for bone age assessment of children. Dissertation. University of Southern California

  27. Deserno TM, Antani S, Long R (2009) Ontology of gaps in content-based image retrieval. J Digit Imaging 22(2): 202–215

    Article  PubMed  Google Scholar 

  28. Muller H, Despont-Gros C, Hersh W et al (2006) Health care professionals’ image use and search behaviour. In: Proceedings of MIE, pp 24–32

  29. Hersh W, Muller H, Gorman P, Jensen J (2005) Task analysis for evaluating image retrieval systems in the ImageCLEF biomedical Image Retrieval Task. In: Proceedings of SOL, Portland, OR, USA

  30. Deserno TM, Güld MO, Plodowski B, Spitzer K, Wein BB, Schubert H, Ney H, Seidl T (2008) Extended query refinement for medical image retrieval. J Digit Imaging 21(3): 280–289

    Article  PubMed  Google Scholar 

  31. Deserno TM (ed) (2011) Biomedical image processing, Chapter 17, Digital imaging and communications in medicine. Springer, Berlin, pp 427–454. ISBN 978-3-642-15815-5

  32. Welter P, Hocken C, Deserno TM, Grouls C, Günther RW (2010) Workflow management of content-based image retrieval for CAD support in PACS environments based on IHE. Int J Comput Assist Radiol Surg 5(4): 393–400

    Article  PubMed  Google Scholar 

  33. Ruppertshofen H, Lorenz C, Schmidt S, Beyerlein P, Salah Z, Rose G, Schramm H (2011) Discriminative generalized hough transform for localization of joints in the lower extremities. J Comput Sci 26(1–2): 97–105

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Benedikt Fischer.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Fischer, B., Welter, P., Günther, R.W. et al. Web-based bone age assessment by content-based image retrieval for case-based reasoning. Int J CARS 7, 389–399 (2012). https://doi.org/10.1007/s11548-011-0627-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11548-011-0627-8

Keywords

Navigation