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Abstract
Purpose The purpose of this paper is to present a meth-
odology to estimate the carotid artery lumen centerlines in
ultrasound (US) images obtained in a free-hand examination.
Challenging aspects here are speckle noise in US images,
artifacts, and the lack of contrast in the direction orthogonal
to the US beam direction.
Method An algorithm based on a rough lumen segmentation
obtained by robust ellipse fitting was developed to deal with
these conditions and estimate the lumen center in 2D B-mode
scans. In a free-hand sweep examination, continuous image
acquisitions are performed through time when the radiolo-
gist moves the probe on the patient’s neck. The result is a
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series of images that show 2D cross-sections of the carotid’s
morphology. A tracking sensor (Flock of Birds) was attached
to the probe and both were connected to a PC executing the
Stradwin software, which relates spatial information to the
acquisition data of the US probe. The spatial information was
combined with the 2D lumen center estimates to provide a
centerline in 3D. For validation, 19 carotid scans from 15 dif-
ferent patients were scanned, their centerlines calculated by
the algorithm and compared with results acquired by manual
annotations.
Results The average Euclidean distance between both
among all the examinations was 0.82 mm. For each exam-
ination, the percentage of these Euclidean distances below
2 mm was calculated; the average over all examinations
was 92%.
Conclusion Automated 3D estimation of carotid artery
lumen centerlines in free-hand real-time ultrasound is feasi-
ble and can be performed with high accuracy. The algorithm
is robust enough to keep the centerlines inside the vessel,
even in the absence of contrast in parts of the vessel wall.

Keywords Free-hand ultrasound · Atherosclerosis ·
Carotid lumen centerline

Introduction

Medical imaging studies of the carotid artery generally aim
to observe the presence of atherosclerotic plaque and the
effect on the geometry of the vessel lumen. Both athero-
sclerotic plaque, as well as luminal stenosis are related to
cerebrovascular diseases [1]. Several imaging modalities are
used, such as magnetic resonance imaging (MRI), com-
puted tomography angiography (CTA), and ultrasound (US),
each having their own advantages and disadvantages. MRI
has good soft-tissue contrast allowing plaque composition
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analysis in 3D, but the resolution of the images is often lim-
ited, especially in the slice direction. CTA visualizes the 3D
lumen geometry with high resolution and clearly shows calci-
fications, but other plaque components (lipids, fibrous tissue,
hemorrhage) are hard to distinguish. US provides 2D images
with high in-plane resolution allowing intima-media thick-
ness measurements, it has high temporal resolution enabling
motion analysis to measure the distensibility of the artery,
but may present speckles, noise and a lack of contrast in the
direction perpendicular to the beam direction. A good sce-
nario could be to combine the information from MRI, CTA,
and US by an integrated analysis, in order to extract plaque
characteristics that cannot be identified using a single modal-
ity. For such a multimodal analysis, co-registration of the dif-
ferent modalities would be helpful. There are several issues
that make the registration of US with MRI/CTA challeng-
ing. Firstly, the US scans are mostly acquired in a 2D mode;
slices are acquired instead of volumes. Secondly, the imag-
ing characteristics are completely different, which compli-
cates the use of purely intensity-based registration methods
(for example, using mutual information). Thirdly, the ini-
tial alignment between MRI/CTA and US is rather arbitrary
(it depends on the scanner’s coordinate system and the posi-
tion of the US probe). The lumen centerline seems a good
candidate for a geometrical landmark that can be extracted
reliably in each modality, based on which a robust initial
alignment procedure can be developed.

In this work, we present a method to track 3D lumen cen-
terlines of the common, internal, and external carotid artery,
from 2D B-mode US scans obtained in a free-hand acqui-
sition, where the probe is gradually moved along the neck
of the patient, imaging transverse sections. Each individ-
ual ultrasound image in this 2D free-hand acquisition rep-
resents a plane cut of a volumetric area (in our case, a region
of the patient’s neck), but with unknown information about
the plane orientation and its position in a three-dimensional
space. An attached tracking device is necessary to record
the probe’s position and orientation during the acquisition.
There are also 3D ultrasound techniques, in which 2D images
are acquired from a known position through mechanical dis-
placement of the probe [2]. However, 2D probes are more
widely used, because they have a higher temporal resolu-
tion. Intima-media thickness (IMT) is usually measured in
longitudinal sections of the carotid [3]. The observation of
the carotid from that perspective also allows to quantify the
extension of the atherosclerotic plaque and to analyze the
behavior of the wall’s motion, but it does not provide enough
data to build a good three-dimensional representation of
the vessel.

The extraction of centerlines from tubular structures
in other modalities, than free-hand ultrasound, has been
addressed in different works [4–9]. Schaap et al. [10] give an
extensive survey of the literature and present an experimental

comparison of algorithms to extract centerlines of coronary
arteries. Hameeteman et al. [11] performed a comparison
of different algorithms to extract carotid arteries in CTA.
Noble and Boukeroui [12] present a survey of different tech-
niques for the segmentation of B-mode US images, including
vessels.

The publications most related to our research are from
Abolmaesumi and Sirouspour [13], Golemati et al. [14],
Hammer et al. [15], and Wang et al. [16,17]. Abolmaesumi
& Sirouspour developed a technique to extract boundaries
for cavities in ultrasound images. Their method identifies
the boundaries by tracing equispaced radii from a given seed
point that lies inside the cavity; visually well-defined borders
are assumed. Golemati et al. employed the Hough transform
to segment arterial sections during wall motion analysis of
the carotid in transverse and longitudinal sections. The diffi-
culty in applying this technique on a free-hand sweep lies in
choosing the appropriate parameters. Due to the probe posi-
tion and the anatomy of the carotid artery, the artery can be
represented on the images in elliptical shapes of different
radii across the same series. Hammer et al. presented a meth-
odology to build 3D representations of the carotid and femo-
ral arteries from free-hand US acquisitions (using a tracking
device) by semi-automated vessel segmentation. Wang et al.
developed an algorithm to track the area of the CCA and jug-
ular vein in transversal sections. In their technique, the ray
casting method is employed to identify the vessels boundaries
and an ellipse is fitted using the end points of the rays. In other
to achieve a better adjusted ellipse, there is an intermediate
step in which outliers rays are pruned before the fitting.

In this paper, an algorithm inspired by Wang’s Spoke
Ellipse algorithm [16,17] is proposed to semi-automate the
calculation of centroids of the common, internal, and exter-
nal carotid in each 2D scan. Our method requires only three
manually placed seed points, indicating the common (CCA),
internal (ICA), and external (ECA) carotid arteries. The algo-
rithm is designed to be robust against missing edge informa-
tion in parts of the carotid wall, due to the lack of contrast
in directions orthogonal to the US beam direction. A mag-
netic tracking device called Flock of Birds (FOB) (Ascension
Technology, Burlington, VT, USA) was attached to the US
probe, to register the displacements during the acquisitions.
To synchronize the sensor information with the images, we
used the publicly available Stradwin software [18]. The next
section presents the algorithm for the centerline extraction.

Method

To estimate a 3D lumen centerline of the carotid arteries,
based on 2D transversal free-hand US acquisitions, the lumen
centroid must be identified in each 2D image. Using the data
from the tracking device, the centroids can be expressed in 3D
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Fig. 1 Images registering the outputs of each one of the six steps of the algorithm for both ICA and ECA in the same slice

coordinates, which allows construction of a smooth 3D cen-
ter line.

In 2D B-mode US images, the carotid’s lumen is repre-
sented by a relatively low intensity, and the vessel wall has
a higher intensity. In transverse sections, the vessel wall is
visible as an (approximately) ellipsoid structure. Part of the
vessel wall is often missing though (see for example Fig. 1),
due to the lack of contrast in the direction perpendicular to
the US beam direction. We developed a robust ellipse fitting
algorithm that can deal with this situation.

The algorithm is composed of 6 steps, which are executed
on each US 2D image. The output of each step is illustrated
in Fig. 1.

Step 1: The algorithm starts by tracing rays in many direc-
tions from a seed point (Point O in Fig. 2) that is
known to be inside the vessel. The angle between
two rays is defined by dividing 360◦ by the num-
ber of rays that will be traced. In our experiment,
we used 256 rays. The length of each ray is limited
by the position where it reaches a pixel with inten-
sity above a certain threshold (τ ), indicating that the
vessel wall is being crossed (Point P).

Step 2: Since we expect the vessel’s cross-section to have
a more or less circular shape, we expect a simi-
lar length among the rays. Outliers are indicative
of missing edges (causing very long rays) or noise
within the lumen (causing very short rays). In order
to discard the outlier rays, a given percentage (ρ)
of the rays that have smallest length and the same

Fig. 2 Points O, E and P

percentage of the rays that have longest length are
pruned.

Step 3: An ellipse is fitted to the extreme points of each
remaining ray. The method presented in the OpenCV
library is used to fit the ellipse [19].

Step 4: A new set of rays is traced using the center of the
ellipse as the initial point (Point O).

Step 5: A second fine-pruning step is performed. For each
ray, the distance is calculated between the end Point
P and the point where it has intersected the previ-
ously fitted ellipse (Point E ). The standard devia-
tion and mean of the EP length are calculated. If
for a given ray, the length of the line segment OP
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Fig. 3 Four US images of the same patient, at different positions along the CCA. The speckle characteristics vary from slice to slice

is bigger than the length of OE and its EP length
is one standard deviation away from the mean of
other EP lengths, the Point P is disconsidered and
Point E is used. If OE is larger than OP, the ray is
always preserved. By discarding only points that are
outside the ellipse, we introduce a bias to shorten rays
to increase the chance that the centerpoint remains
within the lumen in cases where large points of the
lumen boundary are missing. This step is necessary
in cases where the edge information in a large part
of the lumen boundary is missing.

Step 6: By the last, the remaining rays are used to fit a second
ellipse which the centerpoint is saved.

This centerpoint is used as the seed point in the next image
in the series and then these 6 steps are repeated. We are ini-
tializing the algorithm with three seed points, one at each
extreme of the carotid. The algorithm starts at the points in
the internal and external carotid and traverses through the
scans while calculating both centroids, until they are 1 mm
away, at which point the bifurcation is assumed to be located.
Then the algorithm starts in the seed of the common carotid
and stops when it reaches the slice where the seed points of
the bifurcation were located. This approach is invariant to
the direction (from the patient’s shoulders to head, or vice-
versa) that the free-hand acquisition was performed alongside
the neck. In the end, the resulting centerpoints are smoothed
(Gaussian kernel with standard deviation of 1 mm) and inter-
polated by three spline curves, using 3rd order polynomial
splines: one for CCA, one for the ICA, and one for ECA.

Since the lumen and vessel wall intensity distributions
may vary between images (even of the same series), we devel-
oped a procedure to determine τ based on the intensity dis-
tribution around the three initial seed points. Before starting
tracing rays, a kernel of size 1 × 1 mm2 is created around
each of the three seed points. The mean (μ) and the stan-
dard deviation (σ ) of the pixel intensities in the kernel are
calculated. The threshold value is then set to τ = μ + 2.5 σ ,
assuming a Gaussian distribution of the lumen intensities. A
user defined minimum standard deviation (σmin) is enforced
to assure that even if the kernel is located in an area with no
variation in pixel intensities, the threshold will have a higher
value than the pixel at the seed point.
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Fig. 4 The graphs show the variation of the pixel intensity in 1×1 mm2

region around the manual annotated lumen centerlines. The first graph
is from a sequence which almost does not suffer from speckles inside
the lumen. The second sequence shows a more difficult case

If point O is located at a position where all surrounding
pixels have an intensity higher than τ , the algorithm fails.
This situation may occur when there is a large variation of
intensities along the lumen, due to local variations in the
amount of speckle noise, as shown in Fig. 3. Figure 4 displays
the mean pixel intensities along manually annotated center-
lines in two different patients. It shows that the μ and σ val-
ues estimated from the three initial seed points are not always
representative for the entire sequence. We experimented with
several standard denoising methods (e.g., bilateral filtering,
median filtering), but these did not solve the problem, since it
is not only the standard deviation of the noise that increases,
but also the mean intensity.

If the algorithm arrives at a slice where all neighbor points
of point O have a value larger than τ , it leads to rays with a
zero length during the raycasting in Step 1. In case of such
an exception, the algorithm tries to restart from the other end
of the centerline. Five cases are distinguished, depending on
where the exception occurs (Fig. 5).
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Fig. 5 Cases flow chart

The case that the algorithm succeeded in reconstruct-
ing the centerline without presenting failures in any slice
is labeled Case A.

If the algorithm fails in the common carotid, the bifurca-
tion point is used as a new seed point (Case B). Eventually
the algorithm will not be able to calculate all the centerpoints
from this direction either, as the region with speckles will be
encountered from that side as well. The centerpoints in the
intermediate slices with speckles will be defined after inter-
polating the calculated points with the spline curve.

If the centerpoint cannot be estimated in a slice in the ICA
or ECA, the initial seed point in the common carotid is used
as a seed point and it stops when the specific slice is reached
(Case C). In this case, the algorithm will not find the bifur-
cation, but there will be at least one landmark (centerpoint)
per slice.

If case C occurs, but the centerline cannot be estimated
completely in the CCA either, the last centerpoint of the ves-
sel in which the centerline was successfully estimated is used
as a reference (Case D); i.e., if the problem occurred in the
ECA, the last centerpoint in the ICA is used to match the
remaining path of the CCA.

If in the last step of case D, the centerline cannot be esti-
mated again, the algorithm stops (Case E).

The algorithm was fully written in C++, the code is com-
pliant with the GCC compiler and it was stored in a static
library. The library was loaded in a MeVisLab (http://www.
mevislab.de/) module. In the MeVisLab environment, the

GUI interface was handled. At the end of the process, the
shape of the centerline in 3D can be observed with the help
of rendering tools (Fig. 6).

Experiments

Motion tracking and 3D centerline construction

We attached a magnetic tracking sensor, Flock of Birds
(FOB), to the US probe to register the motion during the
free-hand acquisition. The sensor was attached using a
custom-made tool. The FOB sensor provides the difference in
orientation and position between its own position in relation
to a transmitter. Since the transmitter remains fixed during
the acquisition, the sensor movements allow us to track the
probe displacement.

We used the Stradwin software to register the spatial coor-
dinates with a specific image. It gathers the images of a video
stream provided by a video grabber that is connected to the
video output of the US machine. In the end of the scanning,
the information is stored in two different files, the first con-
taining the raw data of each acquired image and the second
the information related to the position sensor and the whole
software calibration. The transformation to world coordi-
nates can be read from these files, and applied to the 2D
centroids to obtain a 3D centerline. Figure 6 shows an exam-
ple performed on data gathered from a volunteer.
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Fig. 6 Representation of the carotid artery’s center points after the
transformation to 3D coordinate system using the Stradwin informa-
tion. The first image shows the manual annotation (yellow) and the
results obtained with the algorithm (red). The second image shows a

point cloud representing the borders of the ellipses calculated after
the step 6. Note that it was not our aim to accurately segment the
carotid artery. Our aim is to extract the lumen centerline in a robust and
efficient way

Table 1 Classification of the examinations from 1 to 19

Exam 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19

A x x x x x x x x x x x x

B x x x x x

C x x x x x x x x x x x x x x x x

D L R L L R L L L L L R L L L L R L R R

E x x x x x x x x x x x x x x x x

Rows: A mild speckles in at least one slice, B speckles in the whole lumen in at least one slice, C missing borders, D the side of the carotid: L-left
or R-right, E presence of plaque

Evaluation on patient data

Subjects

We evaluated the method by comparing the centerpoints esti-
mated by the algorithm with centerpoints estimated by human
manual annotation in every single slice. Nineteen differ-
ent clinical examinations from 15 patients were tested. The
exams 1 and 2 belong to one patient, exams 4 and 5 belong
to a second patient, and exams 17, 18, and 19 belong to
a third patient. The remaining examinations are from dif-
ferent patients. All the examinations were performed with
a Philips iU22 system, using the Philips L9-3 probe. The
pixel spacings were in a range between 0.064 × 0.064 and
0.095 × 0.095 mm2. Number of slices in each sequence var-
ied from 215 to 249.

The FOB tracking system was not yet used in these stud-
ies, since we were aiming to evaluate the results of the algo-
rithm taking in consideration only the issues related to the
ultrasound image, such as missing borders and sensitivity to
noise. A subjective quality examination was performed on all
images classifying the images according to certain charac-
teristics. The result of this examination is shown in Table 1.

Algorithm evaluation

Figure 7 shows box plots of the Euclidean distances between
the manual and calculated centerpoints for each examination.

In cases where the algorithm could not find the bifurcation
due to speckles, the slices where no centerpoints were found
in the ECA or in the ICA were not compared. This hap-
pened in exams 13, 14, and in exam 16 using the second
set of seed points. The average Euclidean distance between
manual annotations and the algorithm results among all the
examinations was 0.82 mm. For each examination, the per-
centage of these Euclidean distances below 2 mm was cal-
culated; the average over all examinations was 92%. In
this experiment, the parameters σmin and ρ were manu-
ally tuned by checking visually the results with different
values. The best results were achieved with σmin = 4 and
ρ = 30%.

In every measurement, the manual and calculated markers
indicated a different position of the beginning of the bifur-
cation. The algorithm defines the bifurcation as the point
where the internal and external centerpoints are less than
1 mm away from each other. In these specific slices, the
closer of the two centerpoints is chosen to be compared with
the common centerpoint in the other annotation. When the
algorithm finds the bifurcation in a different slice than in
the manual annotation this distance can be considerable, like
in exams 3, 6, and 7. The centerpoint is not located out-
side the lumen, but it lies between the manually annotated
centerpoints.

To evaluate the robustness with respect to the choice
of the initial seed points, each dataset was evaluated with
two different seed point sets and the results were compared
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Fig. 7 Euclidean distance of
the algorithm center points and
the center points chosen
manually in mm (a). Euclidean
distance of the algorithm center
points in the first and second set
of seed points in mm (b).
Symbol for the points that lie
outside 3 times the interquartile
range is ‘o’, default symbol for
points between 1.5 and 3 times
the interquartile range is ‘+’
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for every examination. Figure 7 shows for each exami-
nation, a box plot of the Euclidean distance between the
centerpoints produced by the algorithm with two differ-
ent sets of seed points. In the exam 16, the median had
a value bigger than 1 mm because using the second set
of seed points, the algorithm was not able to find the
bifurcation.

Parameters testing

To demonstrate the impact of parameter values, we applied
different sets of parameters and calculate the euclidean dis-
tance with the manual annotated points. On each subject, we
used five different configurations of parameters sets, varying
the σmin and ρ. Table 2 summarizes the results.
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Table 2 The label bifurcation
found indicates the number of
cases (out of 19) in which the
bifurcation was found (which
corresponds to cases A and B in
Fig. 5). The label diverged
expresses the number of cases in
which at least one centerpoint
was marked outside the lumen

Configuration a (σmin = 2, ρ = 30%) b (σmin = 4, ρ = 30%) c (σmin = 8, ρ = 30%)

Average mean ( mm) 0.955 0.817 1.105
Average SD ( mm) 0.744 0.620 1.253
Bifurcation found 13 16 12
Diverged 4 0 5

Configuration d (σmin = 4, ρ = 30%) b (σmin = 4, ρ = 30%) e (σmin = 4, ρ = 30%)

Average mean ( mm) 1.316 0.817 3.841

Average SD ( mm) 3.805 0.620 8.747

Bifurcation found 16 16 7

Diverged 3 0 5

The execution of the algorithm with configuration ‘b’
resulted in centerlines with all points inside the lumen. In
configuration ‘a’, the algorithm characterizes wrongly some
noise pixels inside the lumen as the vessel wall. With config-
uration ‘c’, the real boundaries of the lumen were sometimes
missed, due to a higher threshold. In configuration ‘d’, less
outlier rays were pruned, leading to wider ellipses and, conse-
quently, sometimes divergence. The results of configuration
‘e’ were affected by the exclusion of too many rays, gener-
ating ellipses that poorly represented the lumen. It should be
noted that the optimal choice of σmindepends on the inten-
sity range of the US images, which all were normalized to
[0–255] in our case.

The algorithm in configuration ‘b’ was executed again on
a set of 8 new image sequences, to verify if we did not over-
train our method on the 19 datasets that were used in all other
experiments (since we did not perform a leave-one-out cross-
validation). The 8 new datasets originate from 4 patients (L/R
artery) and had similar characteristics as the other 19 data-
sets. The results were visually inspected. It was verified that
in all of the 8 cases, the centerline remained inside the lumen
and the bifurcation was found in 6 cases.

Future work and discussion

This paper presents a methodology to estimate the 3D lumen
centerline of carotid arteries scanned with free-hand 2D US.
The algorithm’s main objective is to calculate the vessel’s
centerline even if the image does not provide full information
of its boundaries due to limitations in the US examination.
The algorithm is robust enough to keep the centerlines inside
the vessel in the absence of visible edges in the region that
represents the lumen. The sensitivity to the choice of σmin

and ρ was assessed by testing five different sets of param-
eters. The execution time of the algorithm varied from 9 to
12 s depending on the number of slices and centerpoints
in the examination. The whole process considering the disk
access and the Gaussian smoothing took between 19 and 23 s.
All experiments were performed on an Intel(R) Xeon(R)
CPU E5520 with 12 gigabytes of RAM.

The definition of the threshold for the detection of lumen
boundaries is currently based on the intensity distributions
around the three initial seed points. This approach may fail
when the noise characteristics in the lumen change along
the image series. An adaptive procedure, which updates the
threshold in every scan, may be beneficial in such cases.

As a future work, we aim to use this centerline estimate to
register the US scans to MRI and CTA, by matching the cen-
terlines. Despite the initial intention of acquiring a geomet-
rical landmark of an US acquisition to match the images to
other modalities such as MRI and CTA, the extracted lumen
centerline could be useful on its own right. Geometrical char-
acteristics that might be relevant for risk assessment of plaque
development can be extracted from the US-based centerline,
without the need for performing an additional (expensive)
MRI or CTA. According to [20], it is possible to character-
ize the curvature, torsion, and tortuosity by applying classi-
cal differential geometry of curves on the line segments that
compose the centerline. Lee et al. [21] investigated the carotid
geometry and its impact in the blood flow. The exposure to
the so-called “disturbed” flow may be a risk factor for athero-
sclerosis. Lee et al. considered that tortuosity is among the
features that influence the hemodynamic disturbance. Anal-
ysis of more examinations and comparisons with centerlines
extracted from other modalities will allow us to check the
potential of the algorithm in identifying these biomarkers.
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