Skip to main content
Log in

Volume slicing of cone-beam computed tomography images for navigation of percutaneous scaphoid fixation

  • Original Article
  • Published:
International Journal of Computer Assisted Radiology and Surgery Aims and scope Submit manuscript

Abstract

Purpose

Percutaneous scaphoid fixation (PSF) is growing in popularity as a treatment option for non-displaced fractures. Success of this procedure demands high-precision screw placement, which can be difficult to achieve with standard 2D imaging. This study aimed to develop and test a system for computer-assisted navigation using volume slicing of 3D cone-beam computed tomography (CBCT).

Methods

The navigated technique involved a distinctive workflow in which a 3D CBCT imager was calibrated preoperatively, circumventing the need for intraoperative patient-based registration. Intraoperatively, a 3D CBCT image was acquired for both preoperative planning and direct navigation using volume-rendered slices. An in vitro study was conducted to compare the navigated approach to two conventional fluoroscopic methods for volar PSF. The surgical goal was to insert a guide wire to maximize both length and central placement.

Results

There was no significant difference in the mean central placement of guide wire, although the variance in central placement was significantly lower using VS navigation (P < 0.01). The lengths of the drill paths were significantly longer for the VS-navigated group compared with one 2D group (P < 0.1). Each navigated trial required only one drilling attempt and resulted in less radiation exposure than conventional C-arm (P < 0.01).

Conclusions

Volume-sliced navigation achieved a more repeatable and reliable central pin placement, with fewer drilling attempts than conventional 2D techniques. Volume-sliced navigation had a higher number of drill paths within the optimal zone maximizing both length of the path and depth from the surface.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Leslie IJ, Dickson RA (1981) The fractured carpal scaphoid. Natural history and factors influencing outcome. J Bone Joint Surg Br 63-B(2): 225–230

    PubMed  CAS  Google Scholar 

  2. Bond CD, Shin AY, McBride MT, Dao KD (2001) Percutaneous screw fixation or cast immobilization for nondisplaced scaphoid fractures. J Bone Joint Surg Am 83-A(4): 483–488

    PubMed  CAS  Google Scholar 

  3. Pichler W, Windisch G, Schaffler G, Heidari N, Dorr K, Grechenig W (2010) Computer-assisted 3-dimensional anthropometry of the scaphoid. Orthopedics 33(2): 85–88. doi:10.3928/01477447-20100104-16

    Article  PubMed  Google Scholar 

  4. Menapace KA, Larabee L, Arnoczky SP, Neginhal VS, Dass AG, Ross LM (2001) Anatomic placement of the Herbert-Whipple screw in scaphoid fractures: a cadaver study. J Hand Surg Am 26(5): 883–892. doi:10.1053/jhsu.2001.27755

    Article  PubMed  CAS  Google Scholar 

  5. McCallister WV, Knight J, Kaliappan R, Trumble TE (2003) Central placement of the screw in simulated fractures of the scaphoid waist: a biomechanical study. J Bone Joint Surg Am 85-A(1): 72–77

    PubMed  Google Scholar 

  6. Dodds SD, Panjabi MM, Slade JF III (2006) Screw fixation of scaphoid fractures: a biomechanical assessment of screw length and screw augmentation. J Hand Surg Am 31(3): 405–413. doi:10.1016/j.jhsa.2005.09.014

    Article  PubMed  Google Scholar 

  7. Langlotz F, Nolte L-P (2004) Technical Approaches to Computer-Assisted Orthopedic Surgery. Eur J Trauma 30(1): 1–11. doi:10.1007/s00068-004-1374-0

    Article  Google Scholar 

  8. Beek M, Abolmaesumi P, Luenam S, Ellis RE, Sellens RW, Pichora DR (2008) Validation of a new surgical procedure for percutaneous scaphoid fixation using intra-operative ultrasound. Med Image Anal 12(2): 152–162. doi:10.1016/j.media.2007.08.003

    Article  PubMed  CAS  Google Scholar 

  9. Suhm N, Jacob AL, Nolte LP, Regazzoni P, Messmer P (2000) Surgical navigation based on fluoroscopy—clinical application for computer-assisted distal locking of intramedullary implants. Comput Aided Surg 5(6): 391–400. doi:10.1002/igs.1001

    PubMed  CAS  Google Scholar 

  10. Foley KT, Simon DA, Rampersaud YR (2001) Virtual fluoroscopy: computer-assisted fluoroscopic navigation. Spine (Phila Pa 1976) 26(4): 347–351

    Article  CAS  Google Scholar 

  11. Liverneaux PA, Gherissi A, Stefanelli MB (2008) Kirschner wire placement in scaphoid bones using fluoroscopic navigation: a cadaver study comparing conventional techniques with navigation. Int J Med Robot 4(2): 165–173. doi:10.1002/rcs.194

    Article  PubMed  Google Scholar 

  12. Walsh E, Crisco JJ, Wolfe SW (2009) Computer-assisted navigation of volar percutaneous scaphoid placement. J Hand Surg Am 34(9): 1722–1728. doi:10.1016/j.jhsa.2009.08.009

    Article  PubMed  Google Scholar 

  13. Kahler DM (2004) Image guidance: fluoroscopic navigation. Clin Orthop Relat Res 421: 70–76. doi:10.1097/01.blo.0000126869.67208.2d

    Article  PubMed  Google Scholar 

  14. Ritter D, Mitschke M, Graumann R (2002) Markerless navigation with the intra-operative imaging modality SIREMOBIL Iso-C3D. Electromedica 70(1): 31–36

    Google Scholar 

  15. Euler E, Heining S, Riquarts C, Mutschler W (2003) C-arm-based three-dimensional navigation: a preliminary feasibility study. Comput Aided Surg 8(1): 35–41

    Article  PubMed  Google Scholar 

  16. Grutzner P, Hebecker A, Waelti H, Vock B, Nolte L, Wentzensen A (2003) Clinical study for registration-free 3D-navigationwith the SIREMOBIL Iso-C3Dmobile C-arm. Electromedica 71(1 suppl): 6–15

    Google Scholar 

  17. Holly LT, Foley KT (2003) Three-dimensional fluoroscopy-guided percutaneous thoracolumbar pedicle screw placement. Technical note. J Neurosurg 99(3 Suppl): 324–329

    PubMed  Google Scholar 

  18. Holly LT, Foley KT (2007) Image guidance in spine surgery. Orthop Clin North Am 38(3): 451–461. doi:10.1016/j.ocl.2007.04.001 abstract viii

    Article  PubMed  Google Scholar 

  19. Hott JS, Deshmukh VR, Klopfenstein JD, Sonntag VK, Dickman CA, Spetzler RF, Papadopoulos SM (2004) Intraoperative Iso-C C-arm navigation in craniospinal surgery: the first 60 cases. Neurosurgery 54(5): 1131–1137

    Article  PubMed  Google Scholar 

  20. Acosta FL Jr, Thompson TL, Campbell S, Weinstein PR, Ames CP (2005) Use of intraoperative isocentric C-arm 3D fluoroscopy for sextant percutaneous pedicle screw placement: case report and review of the literature. Spine J 5(3): 339–343. doi:10.1016/j.spinee.2004.09.012

    Article  PubMed  Google Scholar 

  21. Rajasekaran S, Kamath V, Shetty AP (2008) Intraoperative Iso-C three-dimensional navigation in excision of spinal osteoid osteomas. Spine (Phila Pa 1976) 33(1): E25–E29. doi:10.1097/BRS.0b013e31815e6308

    Article  CAS  Google Scholar 

  22. Richter M, Geerling J, Zech S, Goesling T, Krettek C (2005) Intraoperative three-dimensional imaging with a motorized mobile C-arm (SIREMOBIL ISO-C-3D) in foot and ankle trauma care: a preliminary report. J Orthop Trauma 19(4): 259–266

    Article  PubMed  Google Scholar 

  23. Atesok K, Finkelstein J, Khoury A, Peyser A, Weil Y, Liebergall M, Mosheiff R (2007) The use of intraoperative three-dimensional imaging (ISO-C-3D) in fixation of intraarticular fractures. Injury 38(10): 1163–1169. doi:10.1016/j.injury.2007.06.014

    Article  PubMed  CAS  Google Scholar 

  24. Kendoff D, Gardner MJ, Citak M, Kfuri M Jr, Thumes B, Krettek C, Hufner T (2008) Value of 3D fluoroscopic imaging of acetabular fractures comparison to 2D fluoroscopy and CT imaging. Arch Orthop Trauma Surg 128(6): 599–605. doi:10.1007/s00402-007-0411-y

    Article  PubMed  CAS  Google Scholar 

  25. Kendoff D, Citak M, Gardner M, Stubig T, Krettek C, Hufner T (2008) Intraoperative 3D imaging: Value and consequences in 248 cases. J Trauma 66(1): 232–238

    Article  Google Scholar 

  26. Smith EJ, Oentoro A, Al-Sanawi H, Gammon B, St. John P, Pichora DR, Ellis RE (2010) Calibration and use of intraoperative cone-beam computed tomography: an in-vitro study for wrist fracture. Med Image Comput Comput Assist Interv 13(Pt 3):359–366

  27. Citak M, O’Loughlin PF, Kendoff D, Suero EM, Gaulke R, Olivier LC, Krettek C, Hufner T (2010) Navigated scaphoid screw placement using customized scaphoid splint: an anatomical study. Arch Orthop Trauma Surg 130(7): 889–895. doi:10.1007/s00402-010-1044-0

    Article  PubMed  Google Scholar 

  28. Heinzelmann AD, Archer G, Bindra RR (2007) Anthropometry of the human scaphoid. J Hand Surg Am 32(7): 1005–1008. doi:10.1016/j.jhsa.2007.05.030

    Article  PubMed  Google Scholar 

  29. Citak M, Kendoff D, Wanich T, Pearle A, Singhai R, Krettek C, Hufner T (2010) The influence of distance on registration in ISO-C-3D navigation: A source of error in ISO-C-3D navigation. Technol Health Care 14: 473–478

    Google Scholar 

  30. Kendoff D, Bogojevic A, Citak M, Maier C, Maier G, Krettek C, Hufner T (2007) Experimental validation of noninvasive referencing in navigated procedures on long bones. J Orthop Res 25(2): 201–207. doi:10.1002/jor.20318

    Article  PubMed  Google Scholar 

  31. Soubeyrand M, Biau D, Mansour C, Mahjoub S, Molina V, Gagey O (2009) Comparison of percutaneous dorsal versus volar fixation of scaphoid waist fractures using a computer model in cadavers. J Hand Surg Am 34(10): 1838–1844. doi:10.1016/j.jhsa.2009.07.012

    Article  PubMed  Google Scholar 

  32. Chan KW, McAdams TR (2004) Central screw placement in percutaneous screw scaphoid fixation: a cadaveric comparison of proximal and distal techniques. J Hand Surg Am 29(1): 74–79. doi:10.1016/j.jhsa.2003.09.002

    Article  PubMed  Google Scholar 

  33. Jeon IH, Micic ID, Oh CW, Park BC, Kim PT (2009) Percutaneous screw fixation for scaphoid fracture: a comparison between the dorsal and the volar approaches. J Hand Surg Am 34(2): 228–236. doi:10.1016/j.jhsa.2008.10.016

    Article  PubMed  Google Scholar 

  34. Ceri N, Korman E, Gunal I, Tetik S (2004) The morphological and morphometric features of the scaphoid. J Hand Surg Br 29(4): 393–398. doi:10.1016/J.JHSB.2004.02.006

    Article  PubMed  CAS  Google Scholar 

  35. Leventhal EL, Wolfe SW, Walsh EF, Crisco JJ (2009) A computational approach to the “optimal” screw axis location and orientation in the scaphoid bone. J Hand Surg Am 34(4): 677–684. doi:10.1016/j.jhsa.2009.01.011

    Article  PubMed  Google Scholar 

  36. Slomczykowski MA, Hofstetter R, Sati M, Krettek C, Nolte LP (2001) Novel computer-assisted fluoroscopy system for intraoperative guidance: feasibility study for distal locking of femoral nails. J Orthop Trauma 15(2): 122–131

    Article  PubMed  CAS  Google Scholar 

  37. Mayman D, Vasarhelyi EM, Long W, Ellis RE, Rudan J, Pichora DR (2005) Computer-assisted guidewire insertion for hip fracture fixation. J Orthop Trauma 19(9): 610–615

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Randy E. Ellis.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Smith, E.J., Al-Sanawi, H.A., Gammon, B. et al. Volume slicing of cone-beam computed tomography images for navigation of percutaneous scaphoid fixation. Int J CARS 7, 433–444 (2012). https://doi.org/10.1007/s11548-011-0634-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11548-011-0634-9

Keywords

Navigation