Skip to main content

Advertisement

Log in

Hand-assisted positioning and contact pressure control for motion compensated robotized transcranial magnetic stimulation

  • Original Article
  • Published:
International Journal of Computer Assisted Radiology and Surgery Aims and scope Submit manuscript

Abstract

Purpose

In Transcranial Magnetic Stimulation (TMS), the principle of magnetic induction is used to stimulate the brain non-invasively. Currently, robotic TMS systems are developed to guarantee precise coil placement on the head and in this way achieve the repeatability of stimulation results. However, usability concerns such as the complicated coil positioning are still unsolved for motion compensated robotized TMS. In this paper, we demonstrate the integration of a force-torque control into a robotic TMS system to improve usability, safety, and precision.

Methods

We integrated a force-torque sensor between robot effector and TMS coil. Coil calibration and gravity compensation have been developed. Based on them, we have implemented hand-assisted positioning for easy and fast coil placement. Furthermore, we have enhanced the existing motion compensation algorithms with a contact pressure control.

Results

The positioning time for an experienced user decreased up to 40% with the help of hand-assisted positioning in comparison with not hand-assisted robotized positioning. It also enabled an inexperienced user to use the system safely.

Conclusion

Integration of a force-torque control into the motion compensated robotized TMS system greatly enhances system’s usability, which is a prerequisite for integration in the clinical workflow and clinical acceptance.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. Albu-Schäffer A, Haddadin S, Ott C, Stemmer A, Wimböck T, Hirzinger G (2007) The dlr lightweight robot—design and control concepts for robots in human environments. Ind Robot 34(5): 376–385

    Article  Google Scholar 

  2. Awiszus F (2003) Tms and threshold hunting. Suppl Clin Neurophysiol 56: 13–23

    Article  PubMed  Google Scholar 

  3. Chronicle EP, Pearson AJ, Matthews C (2005) Development and positioning reliability of a tms coil holder for headache research. Headache: J Head Face Pain 45(1): 37–41. doi:10.1111/j.1526-4610.2005.05008.x

    Article  Google Scholar 

  4. Ernst F, Richter L, Matthäus L, Martens V, Bruder R, Schlaefer A, Schweikard A (2012) Non-orthogonal tool/flange and robot/world calibration for realistic tracking scenarios. Int J Med Robot Comput Assist Surg p (accepted for publication)

  5. Lancaster JL, Narayana S, Wenzel D, Luckemeyer J, Roby J, Fox P (2004) Evaluation of an image-guided, robotically positioned transcranial magnetic stimulation system. Hum Brain Mapp 22(4): 329–340. doi:10.1002/hbm.20041

    Article  PubMed  Google Scholar 

  6. Langguth B, De Ridder D, Dornhoffer JL, Eichhammer P, Folmer RL, Frank E, Fregni F, Gerloff C, Khedr E, Kleinjung T, Landgrebe M, Lee S, Lefaucheur JP, Londero A, Marcondes R, Moller AR, Pascual-Leone A, Plewnia C, Rossi S, Sanchez T, Sand P, Schlee W, Steffens T, Van de Heyning P, Hajak G (2008) Controversy: does repetitive transcranial magnetic stimulation/ transcranial direct current stimulation show efficacy in treating tinnitus patients?. Brain Stimul 1: 192–205

    Article  PubMed  Google Scholar 

  7. Langguth B, Kleinjung T, Landgrebe M, Ridder DD, Hajak G (2010) rTMS for the treatment of tinnitus: the role of neuronavigation for coil positioning. Neurophysiologie Clinique (Clin Neurophysiol) 40(1): 45–58. doi:10.1016/j.neucli.2009.03.001

    Article  CAS  Google Scholar 

  8. Lebossé C, Renaud P, Bayle B, de Mathelin M (2011) Modeling and evaluation of low-cost force sensors. IEEE Trans Robot 27(4): 815–822. doi:10.1109/tro.2011.2119850

    Article  Google Scholar 

  9. Lebossé C, Renaud P, Bayle B, de Mathelin M, Piccin O, Foucher J (2007) A robotic system for automated image-guided transcranial magnetic stimulation. In: Life science systems and applications workshop, 2007. LISA 2007. IEEE/NIH, pp 55–58. doi:10.1109/lssa.2007.4400883

  10. Londero A, Langguth B, Ridder DD, Bonfils P, Lefaucheur JP (2006) Repetitive transcranial magnetic stimulation (rtms): a new therapeutic approach in subjective tinnitus?. Neurophysiologie Clinique (Clin Neurophysiol) 36(3):145–155 doi:10.1016/j.neucli.2006.08.001. http://www.sciencedirect.com/science/article/pii/S0987705306000736

  11. Matthäus L (2008) A robotic assistance system for transcranial magnetic stimulation and its application to motor cortex mapping. Ph.D. thesis, Universität zu Lübeck

  12. Matthäus L, Giese A, Wertheimer D, Schweikard A (2006) Planning and analyzing robotized tms using virtual reality. Stud Health Technol Inf 119: 373–378

    Google Scholar 

  13. Noirhomme Q, Ferrant M, Vandermeeren Y, Olivier E, Macq B, Cuisenaire O (2004) Registration and real-time visualization of transcranial magnetic stimulation with 3-d mr images. IEEE Trans Biomed Eng 51(11): 1994–2005. doi:10.1109/tbme.2004.834266

    Article  PubMed  Google Scholar 

  14. Pascual-Leone A, Davey, NJ, Rothwell, JC, Wassermann, EM Puri, BK (eds) (2002) Handbook of transcranial magnetic stimulation. Arnold, Amsterdam

    Google Scholar 

  15. Renaud P, Piccin O, Lebossé C, Laroche E, de Mathelin M, Bayle B, Foucher J (2006) Robotic image-guided transcranial magnetic stimulation. In: Computer assisted radiology and surgery (CARS), 20th international congress, Osaka, Japan

  16. Richter L, Bruder R, Schlaefer A (2010) Proper force-torque sensor system for robotized TMS: Automatic coil calibration. In: Proceedings of CARS’10, international journal of computer assisted radiology and surgery, vol 5. CARS, Geneva, pp S422–S423

  17. Richter L, Bruder R, Schlaefer A, Schweikard A (2011) Realisierung einer schnellen und wiederholbaren hot-spot-bestimmung für die robotergestützte transkranielle magnet-stimulation mittels kraft-momenten-steuerung. In: CURAC. Magdeburg, pp 31–34

  18. Richter L, Matthäus L, Schlaefer A, Schweikard A (2010) Fast robotic compensation of spontaneous head motion during transcranial magnetic stimulation (TMS). In: UKACC international conference on CONTROL 2010, vol 8. Coventry, UK, pp 872–877

  19. Ruohonen J, Karhu J (2010) Navigated transcranial magnetic stimulation. Neurophysiologie Clinique (Clin Neurophysiol) 40(1):7–17. doi:10.1016/j.neucli.2010.01.006. http://www.sciencedirect.com/science/article/B6VMP-4YDY7T0-1/2/ec0b0959b36b904e5eda9cb42c3a1759

  20. Wassermann, EM, Epstein, CM, Ziemann, U, Walsh, V, Paus, T, Lisanby, SH (eds) (2008) The Oxford handbook of transcranial magnetic stimulation. Oxford University Press, Oxford

    Google Scholar 

  21. Zorn L, Renaud P, Bayle B, Goffin L, Lebossé C, de Mathelin M, Foucher J (2011) Design and evaluation of a robotic system for transcranial magnetic stimulation. IEEE Trans Biomed Eng 99: 1. doi:10.1109/tbme.2011.2179938

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Lars Richter.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Richter, L., Bruder, R. & Schweikard, A. Hand-assisted positioning and contact pressure control for motion compensated robotized transcranial magnetic stimulation. Int J CARS 7, 845–852 (2012). https://doi.org/10.1007/s11548-012-0677-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11548-012-0677-6

Keywords

Navigation