Skip to main content

Advertisement

Log in

A multi-modal approach to computer-assisted deep brain stimulation trajectory planning

  • Original Article
  • Published:
International Journal of Computer Assisted Radiology and Surgery Aims and scope Submit manuscript

Abstract

Purpose

Both frame-based and frameless approaches to deep brain stimulation (DBS) require planning of insertion trajectories that mitigate hemorrhagic risk and loss of neurological function. Currently, this is done by manual inspection of multiple potential electrode trajectories on MR-imaging data. We propose and validate a method for computer-assisted DBS trajectory planning.

Method

Our framework integrates multi-modal MRI analysis (T1w, SWI, TOF-MRA) to compute suitable DBS trajectories that optimize the avoidance of specific critical brain structures. A cylinder model is used to process each trajectory and to evaluate complex surgical constraints described via a combination of binary and fuzzy segmented datasets. The framework automatically aggregates the multiple constraints into a unique ranking of recommended low-risk trajectories. Candidate trajectories are represented as a few well-defined cortical entry patches of best-ranked trajectories and presented to the neurosurgeon for final trajectory selection.

Results

The proposed algorithm permits a search space containing over 8,000 possible trajectories to be processed in less than 20 s. A retrospective analysis on 14 DBS cases of patients with severe Parkinson’s disease reveals that our framework can improve the simultaneous optimization of many pre-formulated surgical constraints. Furthermore, all automatically computed trajectories were evaluated by two neurosurgeons, were judged suitable for surgery and, in many cases, were judged preferable or equivalent to the manually planned trajectories used during the operation.

Conclusions

This work provides neurosurgeons with an intuitive and flexible decision-support system that allows objective and patient-specific optimization of DBS lead trajectories, which should improve insertion safety and reduce surgical time.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. Kringelbach ML, Jenkinson N, Owen SL, Aziz TZ (2007) Translational principles of deep brain stimulation. Nat Rev Neurosci 8(8): 623–635

    Article  PubMed  CAS  Google Scholar 

  2. de Lau LML, Breteler MMB (2006) Epidemiology of Parkinson’s disease. Lancet Neurol 5(6): 525–535

    Article  PubMed  Google Scholar 

  3. Baltuch GH, Stern MB (2007) Deep brain stimulation for Parkinson’s disease, 1st edn. Informa healthcare, New York

    Google Scholar 

  4. Lind G, Schechtmann G, Lind C, Winter J, Meyerson BA, Linderoth B (2008) Subthalamic stimulation for essential tremor. Short- and long-term results and critical target area. Stereotact Funct Neurosurg 86(4): 253–258

    Article  PubMed  Google Scholar 

  5. Duval C, Panisset M, Bertrand G, Sadikot AF (2000) Evidence that ventrolateral thalamotomy may eliminate the supraspinal component of both pathological and physiological tremors. Exp Brain Res 132(2): 216–222

    Article  PubMed  CAS  Google Scholar 

  6. St-Jean P, Sadikot AF, Collins L, Clonda D, Kasrai R, Evans AC, Peters TM (1998) Automated atlas integration and interactive three-dimensional visualization tools for planning and guidance in functional neurosurgery. IEEE Trans Med Imaging 17(5): 672–680

    Article  PubMed  CAS  Google Scholar 

  7. Sadikot AF, Chakravarty MM, Bertrand G, Rymar VV, Al-Subaie F, Collins DL (2011) Creation of computerized 3D MRI-integrated atlases of the human basal ganglia and thalamus. Front Syst Neurosci 5: 71

    Article  PubMed  Google Scholar 

  8. Benabid AL, Chabardes S, Mitrofanis J, Pollak P (2009) Deep brain stimulation of the subthalamic nucleus for the treatment of Parkinson’s disease. Lancet Neurol 8(1): 67–81

    Article  PubMed  Google Scholar 

  9. Strafella AP, Vanderwerf Y, Sadikot AF (2004) Transcranial magnetic stimulation of the human motor cortex influences the neuronal activity of subthalamic nucleus. Eur J Neurosci 20(8): 2245–2249

    Article  PubMed  Google Scholar 

  10. Essert C, Haegelen C, Lalys F, Abadie A, Jannin P (2011) Automatic computation of electrode trajectories for deep brain stimulation: a hybrid symbolic and numerical approach. Int J Comput Assist Radiol Surg 1–16

  11. Elolf E, Bockermann V, Gringel T, Knauth M, Dechent P, Helms G (2007) Improved visibility of the subthalamic nucleus on high-resolution stereotactic MR imaging by added susceptibility (T2*) contrast using multiple gradient echoes. Am J Neuroradiol 28(6): 1093–1094

    Article  PubMed  CAS  Google Scholar 

  12. Xiao Y, Beriault S, Pike GB, Collins DL (2011) Multi-contrast multi-echo FLASH MRI for targeting the subthalamic nucleus. Magn Reson Imaging

  13. D’Haese PF, Cetinkaya E, Konrad PE, Kao C, Dawant BM (2005) Computer-aided placement of deep brain stimulators: from planning to intraoperative guidance. IEEE Trans Med Imaging 24(11): 1469–1478

    Article  PubMed  Google Scholar 

  14. Guo T, Parrent AG, Peters TM (2007) Automatic target and trajectory identification for deep brain stimulation (DBS) procedures. In: Ayache N, Ourselin S, Maeder A (eds) MICCAI 2007. LNCS, vol 4791, pp 483–490

  15. McIntyre CC, Mori S, Sherman DL, Thakor NV, Vitek JL (2004) Electric field and stimulating influence generated by deep brain stimulation of the subthalamic nucleus. Clin Neurophysiol 115(3): 589–595

    Article  PubMed  Google Scholar 

  16. Butson CR, Cooper SE, Henderson JM, McIntyre CC (2007) Patient-specific analysis of the volume of tissue activated during deep brain stimulation. Neuroimage 34(2): 661–670

    Article  PubMed  Google Scholar 

  17. Nowinski WL, Yang GL, Yeo TT (2000) Computer-aided stereotactic functional neurosurgery enhanced by the use of the multiple brain atlas database. IEEE Trans Med Imaging 19(1): 62–69

    Article  PubMed  CAS  Google Scholar 

  18. Lee JD, Huang CH, Lee ST (2002) Improving stereotactic surgery using 3-D reconstruction. IEEE Eng Med Biol Mag 21(6): 109– 116

    Article  PubMed  Google Scholar 

  19. Nowinski WL, Volkau I, Marchenko Y, Thirunavuukarasuu A, Ng TT, Runge VM (2009) A 3D model of human cerebrovasculature derived from 3 T magnetic resonance angiography. Neuroinformatics 7(1): 23–36

    Article  PubMed  Google Scholar 

  20. Nowinski WL, Chua BC, Volkau I, Puspitasari F, Marchenko Y, Runge VM, Knopp MV (2010) Simulation and assessment of cerebrovascular damage in deep brain stimulation using a stereotactic atlas of vasculature and structure derived from multiple 3- and 7-tesla scans. J Neurosurg 113(6): 1234–1241

    Article  PubMed  Google Scholar 

  21. Navkar N, Tsekos N, Stafford J, Weinberg J, Deng Z (2010) Visualization and planning of neurosurgical interventions with straight access. In: Navab N, Jannin P (eds) IPCAI 2010. LNCS, vol 6135, Springer, Heidelberg, pp 1–11

  22. Graves MJ (1997) Magnetic resonance angiography. Br J Radiol 70: 6–28

    PubMed  CAS  Google Scholar 

  23. D’Haese PF, Pallavaram S, Li R, Remple MS, Kao C, Neimat JS, Konrad PE, Dawant BM (2012) CranialVault and its CRAVE tools: a clinical computer assistance system for deep brain stimulation (DBS) therapy. Med Image Anal 16(3):744–753

    Google Scholar 

  24. Vaillant M, Davatzikos C, Taylor R, Bryan R (1997) A path-planning algorithm for image-guided neurosurgery. In: Troccaz J, Grimson E, Mösges R (eds) CVRMed-MRCAS’97. LNCS, vol 1205, Springer, Heidelberg, pp 467–476

  25. Fujii T, Asakura H, Emoto H, Sugou N, Mito T, Shibata I (2002) Automatic path searching for minimally invasive neurosurgical planning. Proc SPIE Med Imaging 4681: 527–538

    Google Scholar 

  26. Tirelli P, De Momi E, Borghese NA, Ferrigno G (2009) An intelligent atlas-based planning system for keyhole neurosurgery. Int J Comput Assist Radiol Surg 4(suppl 1): S85–S91

    Google Scholar 

  27. Fujii T, Emoto H, Sugou N, Mito T, Shibata I (2003) Neuropath planner-automatic path searching for neurosurgery. International Congress Series, vol 1256, pp 587–596

  28. Brunenberg E, Vilanova A, Visser-Vandewalle V, Temel Y, Ackermans L, Platel B, ter Haar Romeny B (2007) Automatic trajectory planning for deep brain stimulation: a feasibility study. In: Ayache N, Ourselin S, Maeder A (eds) MICCAI 2007. LNCS, vol 4791. Springer, Heidelberg, pp 584–592

  29. Shamir R, Tamir I, Dabool E, Joskowicz L, Shoshan Y (2010) A method for planning safe trajectories in image-guided keyhole neurosurgery. In: Jiang T, Navab N, Pluim J, Viergever M (eds) MICCAI 2010. LNCS, vol 6363. Springer, Heidelberg, pp 457–464

  30. Danielsson P-E (1980) Euclidean distance mapping. Comput Graph Image Process 14: 227–248

    Article  Google Scholar 

  31. Haacke EM, Mittal S, Wu Z, Neelavalli J, Cheng YC (2009) Susceptibility-weighted imaging: technical aspects and clinical applications, part 1. AJNR Am J Neuroradiol 30(1): 19–30

    Article  PubMed  CAS  Google Scholar 

  32. Haacke EM, Xu Y, Cheng YC, Reichenbach JR (2004) Susceptibility weighted imaging (SWI). Magn Reson Med 52(3): 612–618

    Article  PubMed  Google Scholar 

  33. Beriault S, Al Subaie F, Mok K, Sadikot AF, Pike GB (2011) Automatic trajectory planning of DBS neurosurgery from multi-modal MRI datasets. In: Fichtinger G, Martel AL, Peters TM (eds) MICCAI 2011. LNCS, vol 6891. Springer, Heidelberg, pp 259–266

  34. Zrinzo L, de Hulzen AL, Gorgulho AA, Limousin P, Staal MJ, De Salles AA, Hariz MI (2009) Avoiding the ventricle: a simple step to improve accuracy of anatomical targeting during deep brain stimulation. J Neurosurg 110(6): 1283–1290

    Article  PubMed  Google Scholar 

  35. Elias WJ, Sansur CA, Frysinger RC (2009) Sulcal and ventricular trajectories in stereotactic surgery. J Neurosurg 110(2): 201–207

    Article  PubMed  Google Scholar 

  36. Sadowski EA, Bennett LK, Chan MR, Wentland AL, Garrett AL, Garrett RW, Djamali A (2007) Nephrogenic systemic fibrosis: risk factors and incidence estimation. Radiology 243(1): 148–157

    Article  PubMed  Google Scholar 

  37. Sled JG, Zijdenbos AP, Evans AC (1998) A nonparametric method for automatic correction of intensity nonuniformity in MRI data. IEEE Trans Med Imaging 17(1): 87–97

    Article  PubMed  CAS  Google Scholar 

  38. Nyul LG, Udupa JK, Xuan Z (2000) New variants of a method of MRI scale standardization. IEEE Trans Med Imaging 19(2): 143–150

    Article  PubMed  CAS  Google Scholar 

  39. Smith SM (2002) Fast robust automated brain extraction. Hum Brain Mapp 17(3): 143–155

    Article  PubMed  Google Scholar 

  40. Smith SM, Jenkinson M, Woolrich MW, Beckmann CF, Behrens TE, Johansen-Berg H, Bannister PR, De Luca M, Drobnjak I, Flitney DE, Niazy RK, Saunders J, Vickers J, Zhang Y, De Stefano N, Brady JM, Matthews PM (2004) Advances in functional and structural MR image analysis and implementation as FSL. Neuroimage 23(suppl 1): S208–S219

    Article  PubMed  Google Scholar 

  41. Fonov V, Evans AC, Botteron K, Almli CR, McKinstry RC, Collins DL (2011) Unbiased average age-appropriate atlases for pediatric studies. Neuroimage 54(1): 313–327

    Article  PubMed  Google Scholar 

  42. Collins DL, Neelin P, Peters TM, Evans AC (1994) Automatic 3D intersubject registration of MR volumetric data in standardized Talairach space. J Comput Assist Tomogr 18(2): 192–205

    Article  PubMed  CAS  Google Scholar 

  43. Collins DL, Holmes C, Peters T, Evans A (1995) Automatic 3D model-based neuroanatomical segmentation. Hum Brain Mapp 3: 190–208

    Article  Google Scholar 

  44. Collins L, Zijdenbos A, Baare W, Evans A (1999) ANIMAL+INSECT: improved cortical structure segmentation. In: Kuba A, Šáamal M, Todd-Pokropek A (eds) IPMI 1999. LNCS. Springer, Heidelberg, pp 210–223

  45. Coupe P, Manjon JV, Fonov V, Pruessner J, Robles M, Collins DL (2011) Patch-based segmentation using expert priors: application to hippocampus and ventricle segmentation. Neuroimage 54(2): 940–954

    Article  PubMed  Google Scholar 

  46. Frangi A, Niessen W, Vincken K, Viergever M (1998) Multiscale vessel enhancement filtering. In: Wells WM, Colchester ACF, Delp SL (eds) MICCAI 1998. LNCS, vol 1496. Springer, Heidelberg, pp 130–137

  47. Essert C, Haegelen C, Jannin P (2010) Automatic computation of electrodes trajectory for deep brain stimulation. In: Liao H, Edwards P, Pan X, Fan Y, Yang G-Z (eds) MIAR 2010. LNCS, vol 6326. Springer, Heidelberg, pp 149–158

  48. Yoo TS, Ackerman MJ, Lorensen WE, Schroeder W, Chalana V, Aylward S, Metaxas D, Whitaker R (2002) Engineering and algorithm design for an image processing API: a technical report on ITK—the insight toolkit. Stud Health Technol Inf 85: 586–592

    Google Scholar 

  49. Schroeder W, Martin K, Lorensen B (2002) The visualization toolkit, 3rd edn

  50. Xu Y, Haacke EM (2006) The role of voxel aspect ratio in determining apparent vascular phase behavior in susceptibility weighted imaging. Magn Reson Imaging 24(2): 155–160

    Article  PubMed  CAS  Google Scholar 

  51. Petersen EA, Holl EM, Martinez-Torres I, Foltynie T, Limousin P, Hariz MI, Zrinzo L (2010) Minimizing brain shift in stereotactic functional neurosurgery. Neurosurgery 67(3 suppl operative): ons213–ons221

    Article  PubMed  Google Scholar 

  52. Zrinzo L, Foltynie T, Limousin P, Hariz MI (2012) Reducing hemorrhagic complications in functional neurosurgery: a large case series and systematic literature review. J Neurosurg 116(1): 84–94

    Article  PubMed  Google Scholar 

  53. Mercier L, Del Maestro RF, Petrecca K, Kochanowska A, Drouin S, Yan CX, Janke AL, Chen SJ, Collins DL (2011) New prototype neuronavigation system based on preoperative imaging and intraoperative freehand ultrasound: system description and validation. Int J Comput Assist Radiol Surg 6(4): 507–522

    Article  PubMed  Google Scholar 

  54. Mathur VK (1991) How well do we know Pareto optimality?. J Econ Educ 22(2): 172–178

    Article  Google Scholar 

  55. Seitel A, Engel M, Sommer CM, Radeleff BA, Essert-Villard C, Baegert C, Fangerau M, Fritzsche KH, Yung K, Meinzer HP, Maier-Hein L (2011) Computer-assisted trajectory planning for percutaneous needle insertions. Med Phys 38(6): 3246–3259

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Silvain Bériault.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Bériault, S., Subaie, F.A., Collins, D.L. et al. A multi-modal approach to computer-assisted deep brain stimulation trajectory planning. Int J CARS 7, 687–704 (2012). https://doi.org/10.1007/s11548-012-0768-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11548-012-0768-4

Keywords

Navigation