Skip to main content

Advertisement

Log in

Design, implementation and evaluation of an independent real-time safety layer for medical robotic systems using a force–torque–acceleration (FTA) sensor

  • Original Article
  • Published:
International Journal of Computer Assisted Radiology and Surgery Aims and scope Submit manuscript

Abstract

Purpose Most medical robotic systems require direct interaction or contact with the robot. Force–Torque (FT) sensors can easily be mounted to the robot to control the contact pressure. However, evaluation is often done in software, which leads to latencies.

Methods To overcome that, we developed an independent safety system, named FTA sensor, which is based on an FT sensor and an accelerometer. An embedded system (ES) runs a real-time monitoring system for continuously checking of the readings. In case of a collision or error, it instantaneously stops the robot via the robot’s external emergency stop.

Results We found that the ES implementing the FTA sensor has a maximum latency of \(1\pm 0.03\) ms to trigger the robot’s emergency stop. For the standard settings in the application of robotized transcranial magnetic stimulation, the robot will stop after at most 4 mm.

Conclusion Therefore, it works as an independent safety layer preventing patient and/or operator from serious harm.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. Adler JR Jr, Chang SD, Murphy MJ, Doty J, Geis P, Hancock SL (1997) The CyberKnife: a frameless robotic system for radiosurgery. Stereotact Funct Neurosurg 69:124–128. doi:10.1159/000099863

    Article  PubMed  Google Scholar 

  2. Baik SH (ed) (2010) Robot surgery. InTech, Vukovar, Croatia

  3. Benabid A, Cinquin P, Lavalle S, Le Bas J, Demongeot J, De Rougemont J (1987) Computer-driven robot for stereotactic surgery connected to ct scan and magnetic resonance imaging. Stereotact Funct Neurosurg 50(1-6):153–154

    Article  CAS  Google Scholar 

  4. Bozovik V (ed) (2008) Medical robotics. InTech, Vienna, Austria

  5. Craig JJ (2005) Introduction to robotics: mechanics and control, 3rd edn. Prentice Hall, Englewood Cliffs

    Google Scholar 

  6. Dombre E, Duchemin G, Poignet P, Pierron F (2003) Dermarob: a safe robot for reconstructive surgery. IEEE Trans Robotics Autom 19(5):876–884. doi:10.1109/tra.2003.817067

    Article  Google Scholar 

  7. Drake JM, Joy M, Goldenberg A, Kreindler D (1991) Computer-and robot-assisted resection of thalamic astrocytomas in children. Neurosurgery 29(1):27

    Article  PubMed  CAS  Google Scholar 

  8. Kwoh YS, Hou J, Jonckheere E, Hayati S (1988) A robot with improved absolute positioning accuracy for ct guided stereotactic brain surgery. IEEE Trans Biomed Eng 35(2):153–160

    Article  PubMed  CAS  Google Scholar 

  9. Lancaster JL, Narayana S, Wenzel D, Luckemeyer J, Roby J, Fox P (2004) Evaluation of an image-guided, robotically positioned transcranial magnetic stimulation system. Hum Brain Mapp 22(4):329–340. doi:10.1002/hbm.20041

    Article  PubMed  Google Scholar 

  10. Lanfranco AR, Castellanos AE, Desai JP, Meyers WC (2004) Robotic surgery: a current perspective. Ann Surg 239(1):14

    Article  PubMed  Google Scholar 

  11. Lebossé C, Renaud P, Bayle B, de Mathelin M, Piccin O, Foucher J (2007) A robotic system for automated image-guided transcranial magnetic stimulation. In: Life science systems and applications workshop, 2007, LISA 2007, IEEE/NIH, pp 55–58. doi:10.1109/lssa.2007.4400883

  12. Li QH, Zamorano L, Pandya A, Perez R, Gong J, Diaz F (2002) The application accuracy of the NeuroMate robot–a quantitative comparison with frameless and frame-based surgical localization systems. Comput Aided Surg 7(2):90–98

    PubMed  Google Scholar 

  13. Matthäus L (2002) A robotic assistance system for transcranial magnetic stimulation and its application to motor cortex mapping. Ph.D. thesis, Universität zu Lübeck

  14. Matthäus L, Giese A, Wertheimer D, Schweikard A (2006) Planning and analyzing robotized tms using virtual reality. Stud Health Technol Inform 119:373–378

    PubMed  Google Scholar 

  15. Matthäus L, Trillenberg P, Bodensteiner C, Giese A, Schweikard A (2006) Robotized TMS for motion compensated navigated brain stimulation. In: Computer assisted radiology and surgery (CARS), 20th international congress. Osaka, Japan

  16. Medtech: Rosa neurosurgery robot. Tech. rep., Medtech SAS, Montepllier, France (2011) http://www.medtechsurgical.com/products/ROSA

  17. Morgan PS, Carter T, Davis S, Sepehri A, Punt J, Byrne P, Moody A, Finlay P (2003) The application accuracy of the pathfinder neurosurgical robot. International congress series CARS 2003. Computer Assisted Radiology and Surgery. Proceedings of the 17th international congress and Exhibition, pp 561–567

  18. Renaud P, Piccin O, Lebossé C, Laroche E, de Mathelin M, Bayle B, Foucher J (2006) Robotic image-guided transcranial magnetic stimulation. In: Computer assisted radiology and surgery (CARS), 20th international congress. Osaka, Japan

  19. Richter L, Bruder R, Schweikard A (2012) Calibration of force/torque and acceleration for an independent safety layer in medical robotic systems. Cureus 4(9):e59. doi:10.7759/cureus.59

  20. Richter L, Bruder R, Schweikard A (2012) Hand-assisted positioning and contact pressure control for motion compensated robotized transcranial magnetic stimulation. Int J Comput Assist Radiol Surg 1–8 [Epub ahead of print]. doi:10.1007/s11548-012-0677-6

  21. Schweikard A, Bodduluri M, Adler JR Jr (1998) Planning for camera-guided robotic radiosurgery. IEEE Trans Rob Autom 14(6):951–962. doi:10.1109/70.736778

    Article  Google Scholar 

  22. Taylor RH (2006) A perspective on medical robotics. Proc IEEE 94(9):1652–1664. doi:10.1109/jproc.2006.880669

    Article  Google Scholar 

  23. Yi X, Bicker R (2010) Design of a robotic transcranial magnetic stimulation system. In: IEEE conference on robotics, automation and mechatronics, Singapore

  24. Zorn L, Renaud P, Bayle B, Goffin L, Lebossé C, de Mathelin M (2012) Design and evaluation of a robotic system for transcranial magnetic stimulation. IEEE Trans Biomed Eng 59(3):805–815. doi:10.1109/tbme.2011.2179938

    Google Scholar 

Download references

Acknowledgments

This work was partially supported by the Graduate School for Computing in Medicine and Life Sciences funded by Germany’s Excellence Initiative [DFG GSC 235/1]. Conflict of interest   None.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Lars Richter.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Richter, L., Bruder, R. Design, implementation and evaluation of an independent real-time safety layer for medical robotic systems using a force–torque–acceleration (FTA) sensor. Int J CARS 8, 429–436 (2013). https://doi.org/10.1007/s11548-012-0791-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11548-012-0791-5

Keywords

Navigation