Skip to main content

Advertisement

Log in

A pilot study on magnetic navigation for transcatheter aortic valve implantation using dynamic aortic model and US image guidance

  • Original Article
  • Published:
International Journal of Computer Assisted Radiology and Surgery Aims and scope Submit manuscript

Abstract

Purpose   In this paper, we propose a pilot study for transcatheter aortic valve implantation guided by an augmented magnetic tracking system (MTS) with a dynamic aortic model and intra-operative ultrasound (US) images. Methods    The dynamic 3D aortic model is constructed from the preoperative 4D computed tomography, which is animated according to the real-time electrocardiograph (ECG) input of patient. Before the procedure, the US probe calibration is performed to map the US image coordinate to the tracked device coordinate. A temporal alignment is performed to synchronize the ECG signals, the intra-operative US image and the tracking information. Thereafter, with the assistance of synchronized ECG signals, the spatial registration is performed by using a feature-based registration. Then the augmented MTS guides the surgeon to confidently position and deploy the transcatheter aortic valve prosthesis to the target.

Results   The approach was validated by US probe calibration evaluation and animal study. The US calibration accuracy achieved \(1.37\pm 0.43\, \text{ mm}\), whereas in the animal study on three porcine subjects, fiducial, target, deployment distance and tilting errors reached \(3.16\pm 0.55\,\text{ mm}\), \(3.80\pm 1.83\,\text{ mm}\), \(3.13\pm 1.12\,\text{ mm}\) and \(5.87\pm 2.35^{\circ }\), respectively.

Conclusion   Our pilot study has revealed that the proposed approach is feasible and accurate for delivery and deployment of transcatheter aortic valve prosthesis.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18

Similar content being viewed by others

References

  1. Nkomo VR, Gardin JM, Skelton TN et al (2006) Burden of valvular heart diseases. Lancet 368:1005–11

    Article  PubMed  Google Scholar 

  2. Otto CM, Knuusisto J, Reichenbach DD, Gown AM, O’Brien KD (1994) Characterization of the early lesion of “degenerative” valvular aortic stenosis. Histological and immunohistochemical studies. Circulation 90(2):844–853

    Article  PubMed  CAS  Google Scholar 

  3. Leon MB, Smith CR, Mack M, Miller DC, Moses JW et al (2010) Transcatheter aortic-valve implantation for aortic stenosis in patients who cannot undergo surgery. N Engl J Med 363(17): 1597–1607

    Google Scholar 

  4. Bonow R, Carabello B, Chatterjee K, de Leon AC, et al (2008) Focused update incorporated into the ACC/AHA 2006 guidelines for the management of patients with valvular heart disease: a report of the American College of Cardiology/American heart association task force on practice guidelines. doi:10.1016/j.jacc.2008.05.008

  5. Iung B, Cachier A, Baron G, Messika-Zeitoun D, Delahaye F et al (2005) Decision-making in elderly patients with severe aortic stenosis: why are so many denied surgery? Eur Heart J 26: 2714–2720

    Google Scholar 

  6. Chu M, Borger M, Mohr F, Walther T (2010) Transcatheter heart-valve replacement: update. Can Med Assoc J 182(8):791–795

    Article  Google Scholar 

  7. Cribier A, Eltchaninoff H, Bash A, Borenstein N, Tron C, Bauer F, Derumeaux G, Anselme F, Laborde F, Leon MB (2002) Percutaneous transcatheter implantation of an aortic valve prosthesis for calcific aortic stenosis: first human case description. Circulation 106:3006–3008

    Article  PubMed  Google Scholar 

  8. Leipsic J, Gurvitch R, LaBounty TM, Min JK, Wood D, Johnson M, Ajlan AM, Wijesinghe N, Webb JG (2011) Multidetector computed tomography in transcatheter aortic valve implantation. J Am Coll Cardiol Imaging doi:10.1016/j.jcmg.2011.01.014

  9. Lang P, Seslija P, Chu MW, Bainbridge D, Guiraudon GM, Jones DL, Peters TM (2012) US-fluoroscopy registration for transcatheter aortic valve implantation. IEEE Trans Biomed Eng 59(5):1444–1453

    Article  PubMed  Google Scholar 

  10. Delgado V, Ng A, Shanks M, Van Der Kley F, Schuijf J, Van De Veire N, Kroft L, Roos A, Schalij M, Bax J (2010) Transcatheter aortic valve implantation: role of multimodality cardiac imaging. Expert Rev Cardiovasc Ther 8(1):113–123

    Article  PubMed  Google Scholar 

  11. Greenberg RK, Haulon S, O’Neill S, Lyden S, Ouriel K (2004) Primary endovascular repair of juxtarenal aneurysms with fenestrated endovascular grafting. Eur J Vasc Endovasc Surg 27:484–491

    Article  PubMed  CAS  Google Scholar 

  12. Tarek D (2009) An evidence-based approach to minimise contrast-induced neuropathy. N Z Med J 122(1299):39–41

    Google Scholar 

  13. Kempfert J, Rastan A, Noettling A, Blumenstein J, Linke A, et al Perioperative dynact for improved imaging during transapical aortic valve implantation. Circulation. doi:10.1055/s-0029-1246838

  14. Horvath K, Mazilu D, Guttman M, Zetts A, Hunt T, Li M (2010) Midterm results of transapical aortic valve replacement via real-time magnetic resonance imaging guidance. J Thorac Cardiovasc Surg 139(2):424–430

    Article  PubMed  Google Scholar 

  15. Horvath K, Mazilu D, Kocaturk O, Li M (2011) Transapical aortic valve replacement under real-time magnetic resonance imaging guidance: experimental results with balloon-expandable and self-expanding stents. Eur J Cardio-Thorac Surg 39(6):822–828

    Article  Google Scholar 

  16. Wood BJ, Zhang H, Durrani A et al (2005) Navigation with electromagnetic tracking for interventional radiology procedures: a feasibility study. J Vasc Int Radiol 16:493–505

    Article  Google Scholar 

  17. Manstad-Hulaas F, Ommedal S, Tangen GA, Aadahl P, Hernes TN (2007) Side-branched AAA stent graft insertion using navigation technology: a phantom study. Eur Surg Res 39(6):364–371

    Article  PubMed  CAS  Google Scholar 

  18. Abi-Jaoudeh N, Glossop N, Dake M, Pritchard WF, Chiesa A, Dreher MR, Tang T, Karanian JW, Wood BJ (2010) Electromagnetic navigation for thoracic aortic stent-graft deployment: a pilot study in swine. J Vasc Int Radiol 21:888–895

    Article  Google Scholar 

  19. Huang X, Moore J, Guiraudon G, Jones DL, Bainbridge D, Renand J, Peters TM (2009) Dynamic 2D ultrasound and 3D CT image registration of the beating heart. IEEE Trans Med Imaging 28: 1179–1189

    Google Scholar 

  20. Huber CH, Nasratulla M, Augstburger M, Von Segesser LK (2004) Ultrasound navigation through the heart for off-pump aortic valved stent implantation: new tool. J Endovasc Ther 11:503–510

    Article  PubMed  Google Scholar 

  21. Lang P, Rajchl M, McLeod AJ, Chu MW, Peters TM (2011) Feature identification for image-guided transcatheter aortic valve implantation. In: Proceedings of SPIE Medical Imaging Conference, vol 8316. pp 83162X–83162X-14

  22. Luo Z, Cai JF, Wang S, Zhao Q, Peters T, Gu L (2012) Magnetic navigation for thoracic aortic stent-graft deployment using ultrasound image guidance. IEEE Trans Biomed Eng. doi:10.1109/TBME.2012.2206388

  23. Sato Y, Nakamoto M, Tamaki Y et al (1998) Image guidance of breast cancer surgery using 3-D ultrasound images and augmented reality visualization. IEEE Trans Med Imaging 17:681–693

    Article  PubMed  CAS  Google Scholar 

  24. Welch JN, Johnson JA, Bax M, Badr R, Shahidi R (2000) A real-time freehand 3D ultrasound system for image-guided surgery. In: Proceedings of the IEEE ultrasonic symposium, San Juan, Puerto Rico, pp 1601–1604

  25. Lindseth F, Tangen GA, Langø T et al (2003) Probe calibration for freehand 3-D ultrasound. Ultrasound Med Biol 29:1607–1623

    Article  PubMed  Google Scholar 

  26. Frantz DD, Wiles AD, Leis SE, Kirsch SR (2003) Accuracy assessment protocols for electromagnetic tracking systems. Phys Med Biol 48:2241–2251

    Article  PubMed  CAS  Google Scholar 

  27. Wierzbicki M, Drangova M, Guiraudon G, Peters T (2004 Sep) Validation of dynamic heart models obtained using non-linear registration for virtual reality training, planning, and guidance of minimally invasive cardiac surgeries. Med Image Anal 8(3): 387–401

    Google Scholar 

  28. Yuan, J, Bae, E, and Tai, X (2010) A study on continuous max-flow and min-cut approaches. In [IEEE conference on computer vision and pattern recognition], IEEE computer society conference on computer vision and, pattern recognition, pp 2217–2224

  29. Rajchl M, Yuan J, Ukwatta E, Peters TM (2012) Fast interactive multi-region cardiac segmentation with linearly ordered labels. In: International symposium on biomedical imaging (ISBI), 2012 IEEE International Conference on

  30. Cai JF, Luo Z, Gu L et al (2010) The implementation of an integrated computer-assisted system for minimally invasive cardiac surgery. Int J Med Robotics Comput Assist Surg 6:102–112

    Google Scholar 

  31. Northern Digital Inc. (2007) Aurora User Guide. Northern Digital: Waterloo, Canada

  32. John M, Liao R, Zheng YF, et al. System to Guide Transcatheter Aortic Valve Implantations Based on Interventional C-Arm CT Imaging. Med Image Comput Comput Assist Interv. doi:10.1007/978-3-642-15705-9_46

  33. Li N, Beck T, Chen J, Biermann C, Guo L, Sun H, Gao F, Liu C (2011) Assessment of thoracic aortic elasticity: a preliminary study using electrocardiographically gated dual-source CT. Eur Radiol 21:1564–1572

    Article  PubMed  Google Scholar 

Download references

Acknowledgments

This research work is partially supported by the Chinese NSFC research fund (61190120, 61190124 and 61271318), the Shanghai municipal health bureau research fund (2011216) and Biomedical engineering fund of Shanghai Jiaotong University (YG201 2MS21). The authors are grateful to the radiologists from Zhongshan Hospital for their support in animal imaging and animal surgery as well as to MicroPort Co., Ltd. for providing and renewing cannula, transcatheter and aortic valve prosthesis for MTS guidance purpose.

Conflict of interest

None.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Lixu Gu.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Luo, Z., Cai, J. & Gu, L. A pilot study on magnetic navigation for transcatheter aortic valve implantation using dynamic aortic model and US image guidance. Int J CARS 8, 677–690 (2013). https://doi.org/10.1007/s11548-012-0809-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11548-012-0809-z

Keywords

Navigation