Skip to main content

Advertisement

Log in

Local/non-local regularized image segmentation using graph-cuts

Application to dynamic and multispectral MRI

  • Original Article
  • Published:
International Journal of Computer Assisted Radiology and Surgery Aims and scope Submit manuscript

Abstract

Objective

Multispectral, multichannel, or time series image segmentation is important for image analysis in a wide range of applications. Regularization of the segmentation is commonly performed using local image information causing the segmented image to be locally smooth or piecewise constant. A new spatial regularization method, incorporating non-local information, was developed and tested.

Methods

Our spatial regularization method applies to feature space classification in multichannel images such as color images and MR image sequences. The spatial regularization involves local edge properties, region boundary minimization, as well as non-local similarities. The method is implemented in a discrete graph-cut setting allowing fast computations.

Results

The method was tested on multidimensional MRI recordings from human kidney and brain in addition to simulated MRI volumes.

Conclusion

The proposed method successfully segment regions with both smooth and complex non-smooth shapes with a minimum of user interaction.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Bae E, Tai XC (2009) Graph cut optimization for the piecewise constant level set method applied to multiphase image segmentation. In: Scale space and variational methods in computer vision. Springer, Berlin, PP 1–13

  2. Boykov Y, Funka-Lea G (2006) Graph cuts and efficient n-d image segmentation. Int J Comput Vis 70:109–131. doi:10.1007/s11263-006-7934-5

    Article  Google Scholar 

  3. Boykov Y, Kolmogorov V (2004) An experimental comparison of min-cut/max-flow algorithms for energy minimization in vision. IEEE Trans Pattern Anal Mach Intell 26(9):1124–1137. doi:10.1109/TPAMI.2004.60

    Article  PubMed  Google Scholar 

  4. Boykov Y, Jolly M-P (2000) Interactive organ segmentation using graph cuts. In: Delp SL, DiGoia AM, Jaramaz B (eds) Medical image computing and computer-assisted intervention MICCAI 2000, vol 1935 of lecture notes in computer science. Springer Berlin, pp 276–286

  5. Bresson X, Chan TF (2008) Non-local unsupervised variational image segmentation models. UCLA cam report, pp 08–67

  6. Buades A, Coll B, Morel JM (2005) A review of image denoising algorithms, with a new one. SIAM J Multiscale Model Simul 4(2):490–530

    Article  Google Scholar 

  7. Chambolle A, Pock T (2011) A first-order primal-dual algorithm for convex problems with applications to imaging. J Math Imaging Vis 40:120–145. doi:10.1007/s10851-010-0251-1

    Article  Google Scholar 

  8. Chan T, Vese L (2001) Active contours without edges. IEEE Trans Image Processing 10(2):266–277. doi:10.1109/83.902291

    Article  CAS  Google Scholar 

  9. Cocosco CA, Kollokian V, Kwan RK-S, Evans AC (1997) BrainWeb: online interface to a 3D MRI simulated Brain database. In: Proceedings of 3rd international conference on functional mapping of the human Brain. NeuroImage, 5(4), part 2/4, S425

  10. Collins DL, Zijdenbos AP, Kollokian V, Sled JG, Kabani NJ, Holmes CJ, Evans AC (1998) Design and construction of a realistic digital brain phantom. IEEE Trans Med Imag 17(3):463–468

    Article  CAS  Google Scholar 

  11. Dice LR (1945) Measures of the amount of ecologic association between species. Ecol Soc Am 26(3):297–302

    Google Scholar 

  12. Fischl B, Salat DH, Busa E, Albert M, Dieterich M, Haselgrove C, van der Kouwe A, Killiany R, Kennedy D, Klaveness S, Montillo A, Makris N, Rosen B, Dale AM (2002) Whole brain segmentation: automated labeling of neuroanatomical structures in the human brain. Neuron 33(3):341–355

    Article  PubMed  CAS  Google Scholar 

  13. Fischl B, Salat DH, van der Kouwe AJW, Makris N, Ségonne F, Quinn BT, Dale AM (2004) Sequence-independent segmentation of magnetic resonance images. NeuroImage 23(supplement 1):S69–S84

    Google Scholar 

  14. Ford LR, Fulkerson DR (1956) Maximal flow through a network. Can J Math 8:399–404

    Article  Google Scholar 

  15. Gilboa G, Osher S (2008) Nonlocal operators with applications to image processing. Multiscale Model Simul 7(3):1005–1028

    Article  Google Scholar 

  16. Goldstein T, Osher S (2009) The split bregman method for l1-regularized problems. SIAM J Imaging Sci 2(2):323–343. doi:10.1137/080725891

    Article  Google Scholar 

  17. Hodneland E, Kjorstad A, Andersen E, Monssen J, Lundervold A, Rorvik J, Munthe-Kaas A (2011) In vivo estimation of glomerular filtration in the kidney using DCE-MRI. In: Proceedings of the 7th international symposium on image and signal processing and analysis (ISPA), pp 755–761

  18. Houhou N, Bresson X, Szlam A, Chan T, Thiran JP (2009) Semi-supervised segmentation based on non-local continuous min-cut. In:Tai XC, Mørken K, Lysaker M, Lie KA (eds) Scale space and variational methods in computer vision, lecture notes in computer science, vol 5567. Springer Berlin, pp 112–123

  19. Jain KA (2010) Data clustering: 50 years beyond k-means. Pattern Recognit Lett 31(8):651–666. doi:10.1016/j.patrec.2009.09.011

    Article  Google Scholar 

  20. Kass M, Witkin A, Terzopoulos D (1988) Snakes: active contour models. Int J Comput Vis 1:321–331. doi:10.1007/BF00133570

    Article  Google Scholar 

  21. Kwan RK-S, Evans AC, Pike GB (1999) MRI simulation-based evaluation of image-processing and classification methods. IEEE Trans Med Imaging 18(11):1085–1097

    Google Scholar 

  22. Kwan RK-S, Evans AC, Pike GB (1996) An extensible MRI simulator for post-processing evaluation. In: Hšhne KH, Kikinis R (eds) Visualization in biomedical computing, vol 1131 of lecture notes in computer science. Springer, Berlin, pp 135–140

  23. Lundervold A, Taxt T, Ersland L, Fenstad AM (2000) Volume distribution of cerebrospinal fluid using multispectral MR imaging. Med Image Anal 4(2):123–136. doi:10.1016/S1361-8415(00)00009-8

    Google Scholar 

  24. Mahalanobis P (1936) On the generalized distance in statistics. In: Proceedings of the National Institute of Science, Calcutta, vol 12, p 49

  25. Mumford D, Shah J (1989) Optimal approximations by piecewise smooth functions and associated variational problems. Commun Pure Appl Math 42(5):577–685

    Article  Google Scholar 

  26. Rusinek H, Boykov Y, Kaur M, Wong S, Bokacheva L, Sajous JB, Huang AJ, Heller S, Lee VS (2007) Performance of an automated segmentation algorithm for 3D MR renography. Magn Reson Med 57(6):1159–1167

    Article  PubMed  Google Scholar 

  27. Werlberger M, Unger M, Pock T, Bischof H (2012) Efficient minimization of the non-local potts model. In: Bruckstein A, Haar Romeny B, Bronstein A, Bronstein M (eds) Scale space and variational methods in computer vision, lecture notes in computer science, vol 6667. Springer, Berlin, pp 314–325

  28. Xu R, Wunsch DI (2005) Survey of clustering algorithms. IEEE Trans Neural Netw 16(3):645–678. doi:10.1109/TNN.2005.845141

    Article  PubMed  Google Scholar 

Download references

Acknowledgments

The authors would like to thank Prof. Jarle Rørvik for providing the DCE-MRI kidney data, and PhD Erlend Hodneland for the development and execution of motion correction for these data. We also acknowledge the MedViz research cluster for computational resources and thank the anonymous reviewers for useful comments. The study was supported by the Western Norway Health Authority (Grant #911593).

Conflict of Interest

None.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Erik A. Hanson.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Hanson, E.A., Lundervold, A. Local/non-local regularized image segmentation using graph-cuts. Int J CARS 8, 1073–1084 (2013). https://doi.org/10.1007/s11548-013-0903-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11548-013-0903-x

Keywords

Navigation