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Abstract: 

Purpose: For the facilitation of minimally invasive robotically performed direct cochlea access 

(DCA) procedure, a surgical planning tool which enables the surgeon to define landmarks for 

patient-to-image registration, identify the necessary anatomical structures and define a safe DCA 

trajectory using patient image data (typically computed tomography (CT) or cone beam CT 

(CBCT)) is required. To this end, a dedicated end-to-end software planning system for the 

planning of DCA procedures that addresses current deficiencies has been developed. 

Methods: Efficient and robust anatomical segmentation is achieved through the implementation of 

semiautomatic algorithms; high accuracy patient-to-image registration is achieved via an 

automated model based fiducial detection algorithm and functionality for the interactive definition 

of a safe drilling trajectory based on case specific drill positioning uncertainty calculations was 

developed. Results: The accuracy and safety of the presented software tool was validated during 

the conduction of eight DCA procedures performed on cadaver heads. The plan for each ear was 

completed in less than 20 minutes and no damage to vital structures occurred during the 

procedures. The integrated fiducial detection functionality enabled final positioning accuracies of 

0.15 ± 0.08 mm. Conclusions: Results of this study demonstrated that the proposed software 

system could aid in the safe planning of a DCA tunnel with an acceptable time. 

mailto:nicolas.gerber@artorg.unibe.ch
http://www.artorg.unibe.ch/
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Introduction 

Implantable hearing aids are able to restore hearing in moderately and profoundly 

deaf people. The majority of devices, such as the cochlear implant (CI) and the 

direct acoustical cochlea stimulator (DACS), require access to the middle and/or 

inner ear created by drilling in the lateral skull base. The most invasive 

component of the procedure is the mastoidectomy during which a large cavity is 

milled out of the mastoid, in order to locate and preserve risk structures such as 

nerves. 

Because the mastoidectomy (30 – 40 mm) is much larger than is physically 

required to insert implantable hearing aids, several surgical strategies have been 

proposed to reduce invasiveness [1], [2]. A percutaneous or direct cochlear access 

(DCA) approach was introduced by Warren et al [3], who suggested that access 

could be gained by drilling a tunnel only slightly larger than the implant in 

diameter (1 mm – 2 mm in case of CI) with the aid of image guidance. The drilled 

trajectory would originate on the outer surface of the mastoid, pass through the 

facial recess, and terminate in the middle ear cavity in the region of the round or 

oval window. 

Feasibility of an image-guided DCA was previously investigated and it was found 

that a drilling accuracy of at least 0.5 mm is required in order to safely drill 

through the facial recess without damaging any surrounding structures [4]. To 

achieve such accuracy, a robotically assisted procedure which overcomes the 

inability to precisely position the surgical drill using hand held instruments [5] 

was suggested [6–10]. The safe and effective conduction of an image guided, 

robotically assisted DCA procedure, strongly relies on the quality of the surgical 

plan and the accuracy at which the surgical plan can be registered to the physical 

patient intraoperatively.  

The primary objective of the surgical plan is the definition of a safe path along 

which a surgical drill could pass without penetrating any sensitive structure. These 

structures include the facial nerve, the chorda tympani, the external auditory canal 

wall and the ossicles. The facial nerve controls all movement of the ipsilateral 

face and any injury would result in temporary or permanent paralysis of half of 
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the patient’s face. Damage to the chorda tympani would cause temporary or 

permanent loss of taste of the ipsilateral tongue. Possible future infection could be 

caused by a breach of the external auditory canal. Looking from the mastoid 

surface to the cochlea, all of the aforementioned structures are contained within a 

window, typically 1.0 mm to 3.5 mm in diameter [11], through which the 

trajectory must also pass. As a result, preoperative planning software solutions, 

which allow for the segmentation of critical structures, are needed to safely and 

effectively plan DCA procedures. 

Trajectory planning on 2D image slices is difficult due to poor representation of 

the spatial arrangements of anatomical structures. 3D environments greatly 

facilitate this process [12–15], however, segmentation of the preoperative image 

data is required in order to create 3D surface models of the anatomy of interest. 

Several segmentation algorithms have been proposed and are reviewed in [16]. 

However, very few of these algorithms have been implemented and verified in a 

preoperative planning software tool. Automatic segmentation of the 

aforementioned anatomical structures for DCA procedure planning was described 

by Noble et al. [17] using an atlas-based solution. One important underlying 

assumption of atlas-based identification method is that the image volumes used to 

create the atlas have similar topology. As a result, errors in segmentation may 

occur in cases of malformed ears. In addition, automatic algorithms remove the 

surgeon from the segmentation process, thus, reducing feedback regarding 

segmentation margins. As a result, a framework which allows visualisation of the 

segmentation output for verification, as well as tools for the possible alteration of 

segmentation results, is required for a robust preoperative planning tool suitable 

for clinical use.  

Automatic trajectory definition and optimisation for DCA procedures based on: 

3D modelled structures, user supplied structure preservation weightings and 

general system accuracy, has been previously proposed [11]. Optimal trajectory 

positioning should not, however, be determined on the basis of anatomy alone and 

in such algorithms, case specific error, patient indications, surgeon preferences 

and experience, and local regulations have not been considered. Additionally, 

adjustments to the automatically defined trajectories by the surgeon are not 

possible. A tool that can provide a case specific prediction of safety margins and 
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enable surgeons to define the optimal trajectory based on all of the available 

patient information is yet to be described.  

For conduction of the defined surgical plan, a planning tool for DCA must provide 

functionality for registering the plan to the patient with an accuracy approximately 

10 times better (0.1 – 0.2 mm) than that available in commercial navigation 

systems. It has been shown that the target registration error (TRE), the Euclidean 

distance between points in the physical space and corresponding points from the 

image space transformed via the registration process depends on the fiducial 

localisation error (FLE) [18]. Thus, localisation of the fiducial markers in the 

image plays an important role in the achievement of accuracy required to 

complete a successful DCA. Automated fiducial detection, which eliminates user 

variability, has been widely reported in image-guided neurosurgery and ear, nose, 

and throat surgery, [19–27], however, these methods provide accuracies 

insufficient for DCA procedures. 

For the facilitation of middle ear access through a minimally invasive DCA 

procedure, a surgical planning tool which enables the surgeon to define landmarks 

for patient-to-image registration, identify the necessary anatomical structures and 

define a safe DCA trajectory using patient image data (typically computed 

tomography (CT) or cone beam CT (CBCT)) is required. However, to our 

knowledge, no end-to-end solution is available. To this end, we have developed a 

dedicated end-to-end software planning system for the planning of DCA 

procedures that addresses current deficiencies. 

The proposed software tool, including methods of fiducial localisation, structure 

segmentation, trajectory definition and error prediction are described within this 

work. In addition, the results of an initial validation of the software as conducted 

during the drilling of DCA tunnels for CI implantation in cadaver heads, is 

presented. 

Methods 

The proposed planning software tool was designed to interface with the robotic 

system described in [28]. The five degrees of freedom (DoF) serial kinematic 

surgical robot system was developed as a dedicated solution for DCA cochlear 

implantation surgery. The robotic arm contains a six degrees of freedom force 

torque sensor in its wrist (Mini40, ATI, USA), which allows the user to 
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manipulate the end effector within the robot’s workspace through admittance 

control. Navigation is provided by a high precision optical tracking system 

(CamBar B1, Axios 3D GmbH, Germany) which is attached to the robot’s base 

and operates at a distance of 150 mm to 350 mm from the situs. It tracks active 

tracking markers attached to the tool and the patient within a cubic workspace of 

approximately 200 mm × 200 mm × 200 mm with an accuracy of 0.05 mm. 

Patient-to-image registration is achieved through pair point matching of bone 

implanted 1.5 × 3 mm titanium surgical screws (M-5220.03, Medartis, 

Switzerland), which are localised in the patient coordinate system through a 

semiautomatic ball-in-cone positioning method [27]. The robot is designed to 

autonomously drill a preoperatively planned trajectory through the mastoid to the 

middle ear following the workflow depicted in Figure 1. 

 

Figure 1 : Clinical workflow using the proposed software planning system for DCA surgery. Steps 

highlighted in blue are performed preoperatively using the proposed planning software system. 

 

Initially, at least three (typically four) fiducial screws are implanted into the 

patient’s temporal bone to provide correspondence between the patient and the 

image data set. Fiducials are inserted around the external auditory canal at the 

zygomatic process, the mastoid process, and two additional positions 

approximately equidistant on the opposite side of the external auditory meatus. 

Preoperative images of the patient’s mastoid are then acquired using a CBCT 

system (i.e. ProMax 3D Max, Planmeca, Finland) in high resolution mode 

(0.15 mm × 0.15 mm × 0.15 mm).  

After loading the patient image data, a plan is performed in three primary steps: 

the detection of fiducial marker positions for patient-to-image registration; the 

segmentation of relevant anatomical structures and the definition of a trajectory. 

These three steps are described below in detail. Once the plan is complete, it is 

saved and exported for use by the robotic system described above. Finally, the 

DCA is drilled by the robotic system intraoperatively. 

The proposed planning software system (see Figure 2) was developed using the 

C++ programing language and open source libraries including: Qt (Digia, 
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Helsinki, Finland), Open Inventor (Coin3D, Kongsberg, Norway), the DICOM 

Toolkit (DCMTK, OFFIS computer science institute, Germany), the Visualization 

Toolkit (VTK, Kitware Inc., USA) and the Insight Segmentation and Registration 

Toolkit (ITK, Kitware Inc., USA). It was designed to be run on a standard laptop 

computer by medical staff. 

 

Figure 2: User interface of the proposed planning software system showing a completed plan. 

Fiducial Localisation 

To enable the drilling of a DCA tunnel with accuracy greater than 0.5 mm, a 

target registration error of less than 0.2 mm is required. In order to achieve such 

high accuracy, an automated technique that removes user variability was 

developed [27]. 

Within the image, the screw location must be defined as the position at which the 

robotic system’s registration tool sits in the conical indent in the fiducial screw 

head (refer to Figure 3 (d)). An initial coarse localisation of each fiducial screw is 

manually defined with a user-supplied single selection. Thereafter, the exact 

registration position of the fiducial is determined automatically by the proposed 

planning software system using the following methodology (see Figure 3): 

1. A small sub-volume encompassing each screw is cropped from image 

volume data. 

2. Features corresponding to the boundary of the fiducial screw are extracted 

by applying a gradient magnitude filter followed by a thresholding of the 

sub-volume. 
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3. A threshold is applied to the gradient magnitude in order to extract the 

voxels located at the boundary of the fiducial screw. 

4. A coarse registration of the 3D surface model to the corresponding binary 

sub-volume is computed using their respective centroids and principal axes. 

5. The 3D surface model is iteratively matched to the extracted features via a 

standard iterative closest point matching algorithm. 

6. The position of the screw, transformed to the calibrated registration tool 

position within the screw’s indent, is returned. 

 

Figure 3: Fiducial detection workflow in the image: cropped subvolume (a); Extracted features 

with binary subvolume (b); and co-registered fiducial model and image (c). Ball-in-cone 

representation (d). 

 

This methodology was verified on phantoms with clinically relevant fiducial and 

target locations. The fiducial localisation in the image (FLEim) was found to have 

a ground truth error of 0.153 mm ± 0.061 mm (N = 30) and, when used in 

conjunction with the automatic fiducial detection technique on the patient (FLEpat 

= 0.046 mm ± 0.029 mm) a mean TRE of 0.101 mm ± 0.40 mm (N = 144). For a 

more detailed description of the registration methodology and its verification, we 

direct the reader to [27]. 

Anatomical Structures Segmentation 

The definition of a safe DCA trajectory initially requires 3D segmented models of 

the relevant anatomical structures of the ear and middle ear. The required 

structures include: the mastoid for definition of the trajectory entry position; the 

round window or the oval window as a target for the drilled trajectory; and the 

auditory ear canal wall, the facial nerve, the chorda tympani and the ossicles as 

anatomy to preserve during the drilling process. 

A semi-automatic approach to segmentation was adopted in order to allow 

structures to be quickly and easily segmented whilst allowing the operator to 

maintain control over the segmentation margins and segmentation verification. 
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After loading the patient’s images, a 3D surface model of the mastoid is created 

using three steps. Firstly, the user defines a lower and an upper threshold to select 

the bony structures in the image data set. Voxels with a value inside the defined 

range are displayed with a red overlay mask (see Figure 4). Secondly, a box is 

delimited to select the volume of interest, encompassing the mastoid surface, the 

external auditory canal, and the middle ear and inner ear. This step reduces the 

time required for segmentation and is required because the mastoid is highly 

pneumatised and therefore results in a large surface area. Subsequent image 

processing operations are performed in the volume of interest with VTK filters 

using the selected voxels. To smooth the image, a Gaussian filter is applied ( = 

0.4 in x, y and z directions). Image thresholding is performed using previously 

user-defined lower and upper thresholds. The resulting binary mask is further 

processed with an island removal filter. The marching cube algorithm [29] is used 

to create the 3D surface model before usage of a windowed sinc smoothing filter. 

 

Figure 4 : Mastoid segmentation with selected red overlay (a). 3D surface model of the mastoid 

region (b). 

 

The posterior external auditory canal wall (EAC) is segmented from four user-

supplied mouse clicks. The EAC is first located on the axial view and its axis is 

defined by selecting two points (points one and two on Figure 5). The software 

displays the sagittal plane that passes through the middle of the axis. The user is 

then prompted to define an angle incorporating the desired wall portion to 

segment by clicking points three and four on the sagittal view. The EAC wall is 

automatically computed using a customised algorithm based on a threshold 

intensity value. Starting from the EAC’s axis moving radially in the defined 

region, the wall is located when the voxel intensity reaches the specified 

threshold. The threshold is initially defined as the value used to segment the 

mastoid, however, alteration of its value can be performed in the user interface. 
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Finally, a 3D surface is computed using the resulting point cloud by means of the 

VTK surface reconstruction filter. 

 

Figure 5 : External auditory canal wall segmentation using 4 points and a defined threshold. 

 

Segmentation of the facial nerve and chorda tympani are performed in two steps. 

In a first step, the centreline of each nerve is interactively drawn as a number of 

mouse clicks on any of the standard axial, coronal and sagittal planes (see Figure 

6 a). 

 

Figure 6 : Interactive drawing of the facial nerve and chorda tympani centrelines (a). Curved 

planar reconstruction (CPR) along the facial nerve’s centreline (b). 3D surface model of the facial 

nerve and chorda tympani (c). 

 

In a second step, curved planar reconstruction (CPR) [30] is used to create a 

panoramic view of the nerve along its centreline (see Figure 6 b). A first 

identification of the nerve’s borders is automatically suggested to the user. 

Starting from equally spaced points on the centreline, and moving up and down 

until a predefined threshold intensity is reached, the boundary of the nerve is 
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found. Alteration of the borders is left to the user, who can drag and drop any 

drawn border points. Furthermore, the CPR plane can be manually rotated along 

the nerve’s centreline for visual inspection in the 3D volume. Finally, the 3D 

surface model of the nerve is created by connecting cylinders based on the CPR 

segmentation (see Figure 6 c). 

The segmentation of the ossicles is divided into segmentation of the incus and 

malleus, and segmentation of the stapes. A region growing algorithm with 

connected thresholds criterion is initiated after point selection on the incus or 

malleus (see Figure 7). The thresholds can be modified in the graphical user 

interface. Similarly to the mastoid, a marching cubes algorithm [29] is then used 

to create the 3D surface model of the structures. 

 

Figure 7 : Incus and malleus segmentation (a). 3D surface model of the incus, malleus and stapes 

(b). 

 

The stapes is manually segmented using three landmarks. First, the tip of the incus 

lenticular process is selected. Secondly, the anterior border of the oval window is 

selected. Thirdly, the posterior border of the oval window is defined. A cone 

shape is created using these three landmarks to define the volume region of the 

stapes. 

Tunnel Definition 

Having the necessary anatomical structures modelled, a trajectory can be defined. 

The target, typically the middle of the round window for a CI or the middle of the 

oval window for a DACS implant, is manually selected on the image data set by a 

single mouse click. Subsequently, the entry point is manually designated on the 

surface of the mastoid in order to establish a suitable tunnel avoiding the 

previously modelled structures. The trajectory is optimised by dragging the 

entrance point until sufficient distance to the anatomical structures is found or 

until the surgeon determines that the facial recess is of insufficient size for robotic 
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surgery eligibility. To aid the surgeon in the determination of a safe trajectory, 

predicted error pertaining to the DCA procedure is calculated and displayed as a 

3D model around the planned trajectory. In addition, safety margins, measured 

from the surface of the trajectory model (including error) to anatomical structures, 

are computed and displayed.  

Error associated with a robotically performed DCA procedure is composed of 

case specific and general system error. System error pertaining to the, robotic 

system and drilling process (primarily composed of tracking error and error due to 

tool bending) is entered as a static value into the planning tool by the user. For the 

described robotic system, general system error has been previously determined as 

approximately 0.05 mm. Case specific errors are attributed to the error pertaining 

to the patient-to-image registration. Whilst a specific registration error cannot be 

determined until after the registration process, a prediction of target registration 

error (𝑇𝑅𝐸), can be approximated in the planning phase using  equation (1) from 

[18] where: 𝑘 is the number of dimensions, 𝑑𝑘 is the distance of the target  from 

principal axis 𝑘 of the fiducials; 𝑓𝑘 is the root mean square distance of the 

fiducials from principal axis 𝑘; 𝑁 is the number of fiducials; and 𝐹𝐿𝐸 is a static 

value (0.159 mm) defined by the previously determined statistical FLEs 

associated with the employed fiducial detection methods within he image and on 

the patient [27]. 

 

〈𝑇𝑅𝐸2〉 ≈
〈𝐹𝐿𝐸2〉

𝑁
(1 +

1

3
∑

𝑑𝑘
2

𝑓𝑘
2

3

𝑘=1

)  

 

 where                  〈𝐹𝐿𝐸2〉 = 〈𝐹𝐿𝐸𝑖𝑚
2 〉 + 〈𝐹𝐿𝐸𝑝𝑎𝑡

2 〉 

(1) 

Because registration error (TRE) varies with distance from the registration plane, 

the value is calculated for 1 mm increments along the user selected trajectory. The 

total error value, defined as the addition of system error and predicted registration 

error for each increment, is calculated and displayed around the trajectory in the 

3D model view. Additionally, distances to anatomical structures are computed 

including total error and are displayed to the user (see Figure 8). 
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Figure 8 : Trajectory definition including minimum distances to structures. 

 

Verification 

Ten ears from five whole cadaver heads were used to evaluate the proposed 

method. For each ear, four fiducial screws were implanted prior to CBCT imaging 

in high resolution mode. For each ear, a trajectory of 1.8 mm was planned from 

the mastoid surface to the middle of the round window through the facial recess 

with the objective of preserving all vital anatomical structures. Because of the 

importance of the facial nerve, any case in which it was not possible to define a 

trajectory with safety margin (from the tunnel to the facial nerve surface) greater 

than 0.2 mm, was classified as ineligible for a DCA procedure and automatically 

excluded from the study. The time to create each of the ten plans was recorded. 

Each plan was imported into the image-guided robotic system and used for 

registration and guidance of the DCA procedure. 

Postoperatively, a 1.8 mm titanium Kirschner wire was inserted into the drilled 

tunnels and a CBCT image in high resolution mode was acquired. On the resulting 

postoperative image data, the wire was segmented using region growing (I > 2500 

HU). Linear least squares regression was used on the segmented voxels to find the 

axis of the DCA tunnel. Pair point matching was used to register the postoperative 

image data to the preoperative image data using the fiducial screw positions 

extracted with the proposed planning software system. The deviation of entrance 

was determined by computing the Euclidian distance between the planned 

entrance position and its projection onto the drilled trajectory axis. Similarly, the 

target deviation was obtained by computing the Euclidian distance between the 

planned target position and its projection onto the drilled trajectory axis. In order 
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to verify the segmentation, the postoperative images were additionally examined 

for the presence of damage to vital structures. 

Results 

The proposed planning software system was successfully used to plan the ten 

DCA procedures. One head was found to have insufficient safety margins on both 

sides and was thus excluded from the study. Feedback from the software revealed 

that it was impossible to define a tunnel without penetrating both the facial nerve 

and the external auditory canal on the left side and that, on the right side, safety 

margins (including predicted errors) greater than 0.15 mm to the facial nerve were 

not possible. For eight of the ten ears, trajectories were planned to pass through 

the facial recess avoiding all vital anatomical structures (see Figure 9). The 

planning software did not predict damage to any vital structure for any of the eight 

DCA procedures. The plan for each ear was completed in less than 20 minutes. 

 

Figure 9: Drilling results with drilled trajectory overlaid with preoperative plan. 

 

Accurate DCA drilling was enabled via a dedicated fiducial detection algorithm in 

the image and resulted in mean drilling errors at the entrance and at the target of 

0.08 ± 0.05 mm (N = 8) and 0.15 ± 0.08 mm (N = 8) respectively [31]. Through 

visual inspection of the postoperative images, it was observed that all vital 

anatomy was preserved in all eight DCA procedures and thus, predicted safety 

margins for all cases were sufficient. 
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Discussion 

Within this work we propose a dedicated surgical planning software tool for 

robotically performed DCA that enables safe trajectory planning and sufficiently 

accurate patient-to-image registration. Results of this study demonstrated that the 

software could aid in the safe planning of a DCA tunnel with an acceptable time. 

In addition, it provided fiducial localisation accuracy that enabled an overall 

procedure error of less than 0.26 mm and enabled procedures to be performed 

without damage to any vital anatomical structure. 

Additionally, it is expected that the proposed planning software system would aid 

in the determination of a patient’s eligibility for robotic DCA implantation. With 

very small distances between the drilled trajectory and critical anatomical 

structures, the ability of the surgeon to successfully assess the safety of the 

procedure and the eligibility of each patient is vital. Eligibility is based on the 

expected error of the procedure and on the size of the facial recess through which 

the drilling trajectory passes. By providing a 3D visualisation of the internal 

anatomy, surgical plan and predicted surgical error and through the display of a 

quantitative analysis of predicted safety margins, the proposed planning software 

system aids the surgeon in this process. The definition of a general “sufficient” 

safety margin for an individual anatomical structure is not possible. The 

importance of preservation of structures such as the chorda tympani or ossicles is, 

for example, additionally influenced by the presence of residual hearing or local 

customs or regulations and thus, must be determined by the operating surgeon for 

each individual case. It is thus believed, that providing surgeons with useful, 

interpretable information regarding the predicted surgical situation within the 

planning phase and enabling them, with their extensive knowledge and 

experience, to make decisions regarding procedure safety, remains an optimal 

solution, superior to any fully automatic procedure planning algorithm or safety 

determination.  

Additionally, due to small safety margins, the accuracy of the segmentation of 

anatomical structures throughout the planning process is paramount. Currently, 

the gold standard in segmentation is achieved through manual segmentation [32]. 

Unfortunately, integration of manual segmentation of all structures required for a 

DCA plan in clinical routine is not feasible due to the time involved. The 

proposed planning software system has been designed to increase the speed of the 
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segmentation process whilst preserving the surgeons control over segmentation 

margins and their knowledge of the segmentation quality. Whilst fully automatic 

segmentation tools such as that described by Nobel et al. [14], reduces the 

interaction time, all feedback pertaining to the quality of the images and thus the 

segmentation is removed. Moreover, In order to maintain safety control over the 

procedure, it is important that the surgeon is aware if structures have been over or 

more importantly under segmented. By involving the surgeon in the planning 

process and by displaying visualisations of segmentation regions to the user on 

standard image planes, verification of the segmentation can be conducted 

throughout the segmentation process.  

The verification of segmentation and surgical planning software remains a 

challenge, especially due to the subjective nature of structure boundaries within a 

medical image. Within this study, the plan has been verified through the 

visualised preservation of anatomical structures on the postoperative CBCT data 

as this is the measure of success for such a planning tool. Future studies 

evaluating the intra- and inter-segmentation variance using the presented 

semiautomatic methods will aim to further assess the quality of the segmentations 

through cross examinations by qualified users. 

Whilst the proposed planning software system currently aids the surgeon in 

constructing a safe and effective plan and in determining patient-specific 

eligibility for robotically assisted DCA, intraoperative error can never be 

completely predicted. For this reason, error predictions in the planning software 

provide only an approximate of drill positioning uncertainty and should thus, be 

coupled with intraoperative error prediction methods, that can be conducted after 

patient-to-image registration and throughout the drilling process. For example, 

error prediction can be reapproximated after registration using matching error 

results and a technique, which correlates the drilling force history with bone 

density data to predict a tool’s position within a porous structure like the mastoid 

[33], can be employed to continually reassess error during drilling. 

In addition to interfacing with robotic systems, the proposed planning software 

system could support the planning of conventional hearing aid implantations, 

where patient-specific anatomy could be displayed in a 3D environment to 

increase the surgeon’s spatial awareness. 
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Whilst this work focuses on the planning of the safe conduction of a DCA 

procedure for gaining access of the middle ear cavity, additional functionality that 

would aid in the implantation of a specific hearing device will be considered and 

integrated in future work. For example, the determination of a trajectory, 

approximately tangential to the basal turn of the cochlea could aid to reduce 

trauma during the insertion of a cochlear implant electrode and functionality for 

the planning of a device bed and configuration will be required for the positioning 

of more complex devices such as the DACS. 
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