Skip to main content
Log in

An automated insertion tool for cochlear implants with integrated force sensing capability

  • Original Article
  • Published:
International Journal of Computer Assisted Radiology and Surgery Aims and scope Submit manuscript

Abstract

Purpose

Minimally invasive cochlear implantation and residual hearing preservation require both the surgical approach to the cochlea as well as the implant insertion to be performed in an atraumatic fashion. Considering the geometric limitations of this approach, specialized instrumentation is required to insert the electrode while preserving intracochlear membranes carrying the sensory hair cells.

Methods

An automated insertion tool for cochlear implants, which is capable of sensing insertion forces with a theoretical resolution of \(30\,\upmu \mathrm{N}\), is presented. In contrast to previous designs, the custom force sensor is integrated in the insertion mechanism. Moreover, a test bench for insertion studies under constant and reproducible boundary conditions is proposed. It is used to experimentally validate the force sensing insertion tool, which is achieved by comparing the acquired forces to a ground truth measurement. The results of insertion studies on both an acrylic cochlear phantom and temporal bone specimen are given and discussed.

Results

Results reveal that friction, occurring between the electrode carrier and the inside of the insertion tool guide tube, is likely to affect the force output of the proposed sensor. An appropriate method to compensate for these disturbances is presented and experimentally validated. Using the proposed approach to friction identification, a mean accuracy of \((4.0\pm 3.2)\, \hbox {mN}\) is observed.

Conclusions

The force information provided by the proposed, automated insertion tool can be used to detect complications during electrode insertion. However, in order to obtain accurate results, an identification of frictional forces prior to insertion is mandatory. The insertion tool is capable of automatically executing the appropriate trajectories.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16

Similar content being viewed by others

References

  1. Balachandran R, Mitchell JE, Blachon G, Noble JH, Dawant BM, Fitzpatrick JM, Labadie RF (2010) Percutaneous cochlear implant drilling via customized frames: an in vitro study. Otolaryngol Head Neck Surg 142(3):421–426. doi:10.1016/j.otohns.2009.11.029

    Article  PubMed  Google Scholar 

  2. Baron S, Eilers H, Munske B, Toennies JL, Balachandran R, Labadie RF, Ortmaier T, Webster RJ (2010) Percutaneous inner-ear access via an image-guided industrial robot system. Proc Inst Mech Eng Part H J Eng Med 224(5):633–649. doi:10.1243/09544119JEIM781

    Article  CAS  Google Scholar 

  3. Clark JR, Leon L, Warren FM, Abbott JJ (2011) Investigation of magnetic guidance of cochlear implants. In: Proceedings of IEEE international conference on intelligent robots and systems (IROS), pp 1321–1326

  4. Cochlear Ltd. (2002) Surgeon’s guide for the C124R (CA) cochlear implant, Technical report. Lane Cove, NSW, Australia

  5. Cohen NL, Roland JT, Fishman A (2002) Surgical technique for the nucleus contour cochlear implant. Ear Hear 23(Supplement):59S–66S. doi:10.1097/00003446-200202001-00007

    Article  PubMed  Google Scholar 

  6. Coulson C, Taylor R, Reid A, Griffiths M, Proops D, Brett P (2008) An autonomous surgical robot for drilling a cochleostomy: preliminary porcine trial. Clin Otolaryngol 33(4):343–347. doi:10.1111/j.1749-4486.2008.01703.x

    Article  CAS  PubMed  Google Scholar 

  7. Eilers H, Baron S, Ortmaier T, Heimann B, Baier C, Rau TS, Leinung M, Majdani O (2009) Navigated, robot assisted drilling of a minimally invasive cochlear access. Proceedings of IEEE international conference mechatronics. doi:10.1109/ICMECH.2009.4957213

  8. Fitzpatrick J, West J, Maurer CR Jr (1998) Predicting error in rigid-body point-based registration. IEEE Trans Med Imaging 17(5):694–702. doi:10.1109/42.736021

    Article  CAS  PubMed  Google Scholar 

  9. Fraysse B, Macías AR, Sterkers O, Burdo S, Ramsden R, Deguine O, Klenzner T, Lenarz T, Rodriguez MM, Von Wallenberg E, James C (2006) Residual hearing conservation and electroacoustic stimulation with the Nucleus 24 Contour Advance cochlear implant. Otol Neurotol 27(5):624–633. doi:10.1097/01.mao.0000226289.04048.0f

    Article  PubMed  Google Scholar 

  10. Friedland DR, Runge-Samuelson C (2009) Soft cochlear implantation: rationale for the surgical approach. Trends Amplif 13(2):124–138. doi:10.1177/1084713809336422

    Article  PubMed  Google Scholar 

  11. Frijns J, Briaire J, Grote J (2001) The importance of human cochlear anatomy for the results of modiolus-hugging multichannel cochlear implants. Otol Neurotol 22(3):340–349. doi:10.1097/00129492-200105000-00012

    Article  CAS  PubMed  Google Scholar 

  12. Gough VE, Whitehall SG (1962) Universal tyre test machine. In: Proceedings of International Automobile Technical Congress, pp 117–137

  13. Huang TC, Reitzen SD, Marrinan MS, Waltzman SB, Roland JT (2006) Modiolar coiling, electrical thresholds, and speech perception after cochlear implantation using the Nucleus Contour Advance electrode with the Advance Off Stylet technique. Otol Neurotol 27(2):159–166. doi:10.1097/01.mao.0000187047.58544.d0

    Article  PubMed  Google Scholar 

  14. Hussong A, Rau T, Eilers H, Baron S, Heimann B, Leinung M, Lenarz T, Majdani O (2008) Conception and design of an automated insertion tool for cochlear implants. In: Proceedings of the 30th annual international conference of the IEEE engineering in medicine and biology society, pp 5593–5596. doi:10.1109/IEMBS.2008.4650482

  15. Hussong A, Rau T, Ortmaier T, Heimann B, Lenarz T, Majdani O (2010) An automated insertion tool for cochlear implants: another step towards atraumatic cochlear implant surgery. Int J CARS 5(2):163–171. doi:10.1007/s11548-009-0368-0

    Article  Google Scholar 

  16. James C, Fraysse B, Deguine O, Lenarz T, Mawman D, Ramos A, Ramsden R, Sterkers O (2006) Combined electroacoustic stimulation in conventional candidates for cochlear implantation. Audiol Neurotol 11(Supplement):57–62. doi:10.1159/000095615

    Article  Google Scholar 

  17. Kha H, Chen B (2006) Determination of frictional conditions between electrode array and endosteum lining for use in cochlear implant models. J Biomech 39(9):1752–1756. doi:10.1016/j.jbiomech.2005.04.031

    Article  CAS  PubMed  Google Scholar 

  18. Klenzner T, Ngan C, Knapp F, Knoop H, Kromeier J, Aschendorff A, Papastathopoulos E, Raczkowsky J, Wörn H, Schipper J (2009) New strategies for high precision surgery of the temporal bone using a robotic approach for cochlear implantation. Eur Arch Otorhinolaryngol 266(7):955–960. doi:10.1007/s00405-008-0825-3

    Article  PubMed  Google Scholar 

  19. Kobler JP, Kotlarski J, Öltjen J, Baron S, Ortmaier T (2012) Design and analysis of a head-mounted parallel kinematic device for skull surgery. Int J CARS 7(1):137–149. doi:10.1007/s11548-011-0619-8

    Article  Google Scholar 

  20. Kontorinis G, Lenarz T, Stöver T, Paasche G (2011) Impact of the insertion speed of cochlear implant electrodes on the insertion forces. Otology & Neurotolgy 32(4):565–570. doi:10.1097/MAO.0b013e318219f6ac

    Article  Google Scholar 

  21. Kontorinis G, Paasche G, Lenarz T, Stöver T (2011) The effect of different lubricants on cochlear implant electrode insertion forces. Otol Neurotol 32(7):1050–1056. doi:10.1097/MAO.0b013e31821b3c88

    Article  PubMed  Google Scholar 

  22. Kratchman LB, Blachon GS, Withrow TJ, Balachandran R, Labadie RF, Webster RJ (2011) Design of a bone-attached parallel robot for percutaneous cochlear implantation. IEEE Trans Biomed Eng 58(10):2904–2910. doi:10.1109/TBME.2011.2162512

    Article  PubMed  Google Scholar 

  23. Labadie RF, Balachandran R, Mitchell J, Noble JH, Majdani O, Haynes D, Bennett M, Dawant BM, Fitzpatrick JM (2010) Clinical validation study of percutaneous cochlear access using patient-customized microstereotactic frames. Otol Neurotol 31(1):94. doi:10.1097/MAO.0b013e3181c2f81a

    Article  PubMed Central  PubMed  Google Scholar 

  24. Labadie RF, Chodhury P, Cetinkaya E, Balachandran R, Haynes DS, Fenlon MR, Jusczyzck AS, Fitzpatrick JM (2005) Minimally invasive, image-guided, facial-recess approach to the middle ear: demonstration of the concept of percutaneous cochlear access in vitro. Otol Neurotol 26(4):557–562. doi:10.1097/01.mao.0000178117.61537.5b

    Article  PubMed  Google Scholar 

  25. Labadie RF, Noble JH, Dawant BM, Balachandran R, Majdani O, Fitzpatrick JM (2008) Clinical validation of percutaneous cochlear implant surgery: initial report. The Laryngoscope 118(6):1031–1039. doi:10.1097/MLG.0b013e31816b309e

    Article  PubMed  Google Scholar 

  26. Lenarz T (2006) Cochlear implantation: the Hannover guideline, Technical report. Endo-Press, Tuttlingen

  27. Majdani O, Bartling SH, Leinung M, Stöver T, Lenarz M, Dullin C, Lenarz T (2008) A true minimally invasive approach for cochlear implantation: high accuracy in cranial base navigation through flat-panel-based volume computed tomography. Otol Neurotol 29(2):120–123. doi:10.1097/mao.0b013e318157f7d8

    Article  PubMed  Google Scholar 

  28. Majdani O, Rau T, Baron S, Eilers H, Baier C, Heimann B, Ortmaier T, Bartling S, Lenarz T, Leinung M (2009) A robot-guided minimally invasive approach for cochlear implant surgery: preliminary results of a temporal bone study. Int J CARS 4(5):475–486. doi:10.1007/s11548-009-0360-8

    Article  Google Scholar 

  29. Majdani O, Schurzig D, Hussong A, Rau T, Wittkopf J, Lenarz T, Labadie RF (2010) Force measurement of insertion of cochlear implant electrode arrays in vitro: comparison of surgeon to automated insertion tool. Acta Oto-laryngologica 130(1):31–36. doi:10.3109/00016480902998281

    Article  PubMed  Google Scholar 

  30. Moustris GP, Hiridis SC, Deliparaschos KM, Konstantinidis KM (2011) Evolution of autonomous and semi-autonomous robotic surgical systems: a review of the literature. Int J Med Robotics Comput Assist Surg 7(4):375–392. doi:10.1002/rcs.408

    Article  CAS  Google Scholar 

  31. Rau T, Hussong A, Leinung M, Lenarz T, Majdani O (2010) Automated insertion of preformed cochlear implant electrodes: evaluation of curling behaviour and insertion forces on an artificial cochlear model. Int J CARS 5(2):173–181. doi:10.1007/s11548-009-0299-9

    Article  Google Scholar 

  32. Rodgers Nicewander (1988) Thirteen ways to look at the correlation coefficient. Am Stat 42(1):59–66

    Article  Google Scholar 

  33. Roland JT (2005) Cochlear implant electrode insertion. Oper Tech Otolaryngol Head Neck Surg 16(2):86–92. doi:10.1016/j.otot.2005.04.001

    Article  Google Scholar 

  34. Roland JT (2005) A model for cochlear implant electrode insertion and force evaluation: results with a new electrode design and insertion technique. The Laryngoscope 115(8):1325–1339. doi:10.1097/01.mlg.0000167993.05007.35

    Article  PubMed  Google Scholar 

  35. Schurzig D, Labadie R, Hussong A, Rau T, Webster R (2010) A force sensing automated insertion tool for cochlear electrode implantation. In: Proceedings of IEEE international conference robotics and automation (ICRA), pp 3674–3679. doi:10.1109/ROBOT.2010.5509341

  36. Schurzig D, Labadie RF, Hussong A, Rau T (2011) Design of a tool integrating force sensing with automated insertion in cochlear implantation. IEEE/ASME Trans Mech 0(99):1–9

    Google Scholar 

  37. Stewart D (1966) A platform with six degrees of freedom: a new form of mechanical linkage which enables a platform to move simultaneously in all six degrees of freedom developed by elliott-automation. Aircr Eng Aerosp Technol 38(4):30–35. doi:10.1108/eb034141

  38. Talbot K, Hartley D (2008) Combined electro-acoustic stimulation: a beneficial union? Clin Otolaryngol 33(6):536–545. doi:10.1111/j.1749-4486.2008.01822.x

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  39. Todd CA, Naghdy F, Svehla MJ (2007) Force application during cochlear implant insertion: an analysis for improvement of surgeon technique. IEEE Trans Biomed Eng 54(7):1247–1255. doi:10.1109/TBME.2007.891937

    Article  PubMed  Google Scholar 

  40. Warren FM, Balachandran R, Fitzpatrick JM, Labadie RF (2007) Percutaneous cochlear access using bone-mounted, customized drill guides: demonstration of concept in vitro. Otol Neurotol 28(3):325–329. doi:10.1097/01.mao.0000253287.86737.2e

    Article  PubMed  Google Scholar 

  41. Zhang J, Bhattacharyya S, Simaan N (2009) Model and parameter identification of friction during robotic insertion of cochlear-implant electrode arrays. In: Proceedings of IEEE international conference robotics and automation (ICRA), pp 3859–3864

  42. Zhang J, Wei W, Ding J, Manolidis S, Simaan N (2010) Inroads toward robot-assisted cochlear implant surgery using steerable electrode arrays. Otol Neurotol 31(8):1199–1206. doi:10.1097/MAO.0b013e3181e7117e

    Article  PubMed  Google Scholar 

  43. Zhang J, Wei W, Manolidis S, Simaan N (2009) Optimal path planning for robotic insertion of steerable electrode arrays in cochlear implant surgery. J Med Devices 3(1):1–10. doi:10.1115/1.3039513

    Article  CAS  Google Scholar 

  44. Zhang J, Xu K, Simaan N, Manolidis S (2006) A pilot study of robot-assisted cochlear implant surgery using steerable electrode arrays. Med Image Comput Comput Assist Interv 9(Pt 1):33–40

    PubMed  Google Scholar 

Download references

Acknowledgments

The authors would like to thank Peter Erfurt (Department of Otolaryngology, Hannover Medical School) for preparing the scala tympani phantom, Andreas Hussong (former Institute of Mechatronic Systems) for his preliminary work on the previous insertion tool prototypes, and Cochlear Ltd. for providing Nucleous 24 Contour Advance electrodes. This work was funded by the German Federal Ministry of Education and Research. The project numbers are 01EZ0832, 01EZ0833, 16SV3943, and 16SV3945. Responsibility for the contents of this publication lies with the authors.

Conflict of interest

Jan-Philipp Kobler, Daniel Beckmann, Thomas S. Rau, Omid Majdani, and Tobias Ortmaier declare that they have no conflict of interest.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jan-Philipp Kobler.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kobler, JP., Beckmann, D., Rau, T.S. et al. An automated insertion tool for cochlear implants with integrated force sensing capability. Int J CARS 9, 481–494 (2014). https://doi.org/10.1007/s11548-013-0936-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11548-013-0936-1

Keywords

Navigation