Skip to main content

Advertisement

Log in

Ray-casting based evaluation framework for haptic force feedback during percutaneous transhepatic catheter drainage punctures

  • Original Article
  • Published:
International Journal of Computer Assisted Radiology and Surgery Aims and scope Submit manuscript

Abstract

Purpose

   Development of new needle insertion force feedback algorithms requires comparison with a gold standard method. A new evaluation framework was formulated and tested on needle punctures for percutaneous transhepatic catheter drainage (PTCD).

Methods

   Needle insertion is an established procedure for minimally invasive interventions in the liver. Up-to-date, needle insertions are precisely planned using 2D axial CT slices from 3D data sets. To provide a 3D virtual reality and haptic training and planning environment, the full segmentation of patient data is often a mandatory step. To lessen the time required for manual segmentation, we propose direct haptic volume-rendering based on CT gray values and partially segmented patient data. The core contribution is a new force output evaluation method driven by a ray-casting technique that defines paths from the skin to target structures, i.e., the right hepatic duct near the juncture with the common hepatic duct. A ray-casting method computes insertion trajectories from the skin to the duct considering no-go structures and plausibility criteria. A rating system scores each trajectory. Finally, the best insertion trajectories are selected that reach the target. Along the selected paths, force output comparison between a reference system and the new haptic force output algorithm is carried out, quantified and visualized.

Results

   The evaluation framework is presented along with an exemplary study of the liver using the atlas data set from a reference patient. In a comparison of our reference method to a newer algorithm, force outputs are found to be similar in 99 % of the paths.

Conclusion

   The proposed evaluation framework allows reliable detection of problematic PTCD trajectories and provides valuable hints to improve force feedback algorithm development.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

References

  1. Abolhassani N, Patel R, Moallem M (2007) Needle insertion into soft tissue: a survey. Med Eng Phys 29(4):413–431

    Article  PubMed  Google Scholar 

  2. Baegert C, Villard C, Schreck P, Soler L (2007) Multi-criteria trajectory planning for hepatic radiofrequency ablation. MICCAI Med Image Comput Comput Interv 4792:676–684

    Google Scholar 

  3. Basdogan C, Sedef M, Harders M, Wesarg S (2007) VR-based simulators for training in minimally invasive surgery. IEEE Comput Graph Appl 27(2):54–66

    Article  PubMed  Google Scholar 

  4. Bresenham JE (1965) Algorithm for computer control of a digital plotter. IBM Syst J 4(1):25–30

    Article  Google Scholar 

  5. Campadelli P, Casiraghi E, Esposito A (2009) Liver segmentation from computed tomography scans: a survey and a new algorithm. Artif Intell Med 45(2–3):185–196

    Article  PubMed  Google Scholar 

  6. Dierckx P, Suetens P, Vandermeulen D (1988) An algorithm for surface reconstruction from planar contours using smoothing splines. J Comput Appl Math 23(3):367–388

    Article  Google Scholar 

  7. Engel K (2006) Real-time volume graphics. Ak Peters Series. AK Peters, Limited

  8. Färber M, Hoeborn E, Dalek D, Hummel F, Gerloff C, Bohn CA, Handels H (2008) Training and evaluation of lumbar punctures in a VR-environment using a 6DOF haptic device. MMVR16/Stud Health Technol. Inform 132:112–114

    Google Scholar 

  9. Färber M, Hummel F, Gerloff C, Handels H (2009) Virtual reality simulator for the training of lumbar punctures. Methods Inf Med 48(5):493–501

    Article  PubMed  Google Scholar 

  10. Heimann T, van Ginneken B, Styner M, Arzhaeva Y, Aurich V, Bauer C, Beck A, Becker C, Beichel R, Bekes G, Bello F, Binnig G, Bischof H, Bornik A, Cashman P, Chi Y, Cordova A, Dawant B, Fidrich M, Furst J, Furukawa D, Grenacher L, Hornegger J, Kainmuller D, Kitney R, Kobatake H, Lamecker H, Lange T, Lee J, Lennon B, Li R, Li S, Meinzer HP, Nemeth G, Raicu D, Rau AM, van Rikxoort E, Rousson M, Rusko L, Saddi K, Schmidt G, Seghers D, Shimizu A, Slagmolen P, Sorantin E, Soza G, Susomboon R, Waite J, Wimmer A, Wolf I (2009) Comparison and evaluation of methods for liver segmentation from CT datasets. Trans Med Imaging 28(8):1251–1265

    Google Scholar 

  11. Liwu L (1997) Practical clinical ultrasound diagnosis. World Scientific Publishing Company

  12. Lundin K, Ynnerman A, Gudmundsson B (2002) Proxy-based haptic feedback from volumetric density data. Eurohaptics Conference pp 104–109

  13. Mastmeyer A, Fortmeier D, Handels H (2012) Direct haptic volume rendering in lumbar puncture simulation. Stud Health Technol Inform 173:280–286

    PubMed  Google Scholar 

  14. Mastmeyer A, Fortmeier D, Handels H (2012) Anisotropic diffusion for direct haptic volume rendering in lumbar puncture simulation. In: Tolxdorff T, Deserno TM, Handels H, Meinzer HP (Hrsg.), Bildverarbeitung für die Medizin, (2012) Informatik aktuell. Springer Verlag, Berlin, pp 286–291

  15. Mastmeyer A, Fortmeier D, Maghsoudi E, Simon M, Handels H (2013) Patch-based label fusion using local confidence-measures and weak segmentations. SPIE Medical Imaging 2013

  16. Mastmeyer A, Hecht T, Fortmeier D, Handels H (2013) Raycasting based evaluation framework for needle insertion force feedback algorithms. In: Tolxdorff T, Deserno TM, Handels H, Meinzer HP (Hrsg.), Bildverarbeitung für die Medizin, (2013) Informatik aktuell. Springer, Berlin, pp 3–8

  17. Mharib AM, Ramli AR, Mashohor S, Mahmood RB (2011) Survey on liver CT image segmentation methods. Artif Intell Rev 37(2):83–95

    Article  Google Scholar 

  18. Murphy MJ (2004) Tracking moving organs in real time. Semin Radiat Oncol 14(1):91–100

    Google Scholar 

  19. Nath S, Chen Z, Yue N, Trumpore S, Peschel R (2000) Dosimetric effects of needle divergence in prostate seed implant using 125l and 103pd radioactive seeds. Med Phys 27(5):1058–1066

    Article  CAS  PubMed  Google Scholar 

  20. Pereira PL (2007) Actual role of radiofrequency ablation of liver metastases. Eur Radiol 17(8):2062–2070

    Article  PubMed  Google Scholar 

  21. Ruspini DC, Kolarov K, Khatib O (1997) The haptic display of complex graphical environments. In: Proceedings of the 24th annual conference on Computer graphics and interactive techniques SIGGRAPH vol 97, pp 345–352

  22. Seitel A, Engel M, Sommer CM, Radeleff BA, Caroline EV, Baegert C, Fangerau M, Fritzsche KH, Yung K, Meinzer HP, Maier-Hein L (2011) Computer-assisted trajectory planning for percutaneous needle insertions. Med Phys 38(6):3246–3259

    Article  PubMed  Google Scholar 

  23. Ullrich S, Grottke O, Fried E, Frommen T, Liao W, Rossaint R, Kuhlen T, Deserno TM (2009) An intersubject variable regional anesthesia simulator with a virtual patient architecture. Int J Comput Assist Radiol Surg 4(6):561–570

    Article  PubMed  Google Scholar 

  24. Ullrich S, Kuhlen T (2012) Haptic palpation for medical simulation in virtual environments. IEEE Trans Vis Comput Gr 18(4):617–625

    Article  Google Scholar 

Download references

Acknowledgments

This work is supported by the German Research Foundation (DFG, HA 2355/10-1).

Conflict of interest

Andre Mastmeyer has no conflict of interest. Tobias Hecht has no conflict of interest. Dirk Fortmeier has no conflict of interest. Heinz Handels has no conflict of interest.

Informed consent Informed consent was obtained from all patients for being included in the study. The identity of the subjects under study is not revealed.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Andre Mastmeyer.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Mastmeyer, A., Hecht, T., Fortmeier, D. et al. Ray-casting based evaluation framework for haptic force feedback during percutaneous transhepatic catheter drainage punctures. Int J CARS 9, 421–431 (2014). https://doi.org/10.1007/s11548-013-0959-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11548-013-0959-7

Keywords

Navigation