Skip to main content

Advertisement

Log in

Automated palpation for breast tissue discrimination based on viscoelastic biomechanical properties

  • Original Article
  • Published:
International Journal of Computer Assisted Radiology and Surgery Aims and scope Submit manuscript

Abstract

Purpose

Accurate, noninvasive methods are sought for breast tumor detection and diagnosis. In particular, a need for noninvasive techniques that measure both the nonlinear elastic and viscoelastic properties of breast tissue has been identified. For diagnostic purposes, it is important to select a nonlinear viscoelastic model with a small number of parameters that highly correlate with histological structure. However, the combination of conventional viscoelastic models with nonlinear elastic models requires a large number of parameters. A nonlinear viscoelastic model of breast tissue based on a simple equation with few parameters was developed and tested.

Methods

The nonlinear viscoelastic properties of soft tissues in porcine breast were measured experimentally using fresh ex vivo samples. Robotic palpation was used for measurements employed in a finite element model. These measurements were used to calculate nonlinear viscoelastic parameters for fat, fibroglandular breast parenchyma and muscle. The ability of these parameters to distinguish the tissue types was evaluated in a two-step statistical analysis that included Holm’s pairwise \(t\) test. The discrimination error rate of a set of parameters was evaluated by the Mahalanobis distance.

Results

Ex vivo testing in porcine breast revealed significant differences in the nonlinear viscoelastic parameters among combinations of three tissue types. The discrimination error rate was low among all tested combinations of three tissue types.

Conclusion

Although tissue discrimination was not achieved using only a single nonlinear viscoelastic parameter, a set of four nonlinear viscoelastic parameters were able to reliably and accurately discriminate fat, breast fibroglandular tissue and muscle.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. Porter PL (2009) Global trends in breast cancer incidence and mortality. Salud Publica Mex 51(supply 2):S141–S146

    Article  PubMed  Google Scholar 

  2. Ophir J, Cespedes I, Ponnekanti H, Yazdi Y, Li X (1991) Elastography: a quantitative method for imaging the elasticity of biological tissues. Ultrason Imaging 13(2):111–134

    Article  CAS  PubMed  Google Scholar 

  3. Cespedes I, Ophir J, Ponnekanti H, Maklad N (1993) Elastography: elasticity imaging using ultrasound with application to muscle and breast in vivo. Ultrason Imaging 15(2):73–88

    Article  CAS  PubMed  Google Scholar 

  4. Garra BS, Cespedes EI, Ophir J, Spratt SR, Zuurbier RA, Magnant CM, Pennanen MF (1997) Elastography of breast lesions: initial clinical results. Radiology 202(1):79–86

    Article  CAS  PubMed  Google Scholar 

  5. Lorenz A, Ermert H, Sommerfeld H-J, Garcia-SchÃijrmann M, Senge T, Philip-pou S (2000) Ultrasound elastography of the prostate: an innovative technique for tumour-detection [ultraschall-elastographie der prostata: Ein neues verfahren fur die tumorerkennung]. Ultraschall in der Medizin 21(1):8–15

    Article  CAS  PubMed  Google Scholar 

  6. Nitta N, Shiina T (2002) Estimation of nonlinear elasticity parameter of tissues by ultrasound. Jpn J Appl Phys 4:3572–3578

    Article  Google Scholar 

  7. Hall TJ, Oberai AA, Barbone PE, Sommer AM, Gokhale NH, Goenezen S, Jiang J (2009) Elastic nonlinearity imaging. In: 31st Annual international conference of the IEEE EMBS, pp 1967–1970

  8. Oberai AA, Gokhale NH, Goenezen S, Barbone PE, Hall TJ, Sommer AM, Jiang J (2009) Linear and nonlinear elasticity imaging of soft tissue in vivo: demonstration of feasibility. Phys Med Biol 54:1191–1207

    Article  PubMed Central  PubMed  Google Scholar 

  9. Mehrabian H, Campbell G, Samani A (2010) A constrained reconstruction technique of hyperelasticity parameters for breast cancer assessment. Phys Med Biol 55:7489–7508

    Article  PubMed  Google Scholar 

  10. Asbach P, Klatt D, Hamhaber U, Braun J, Somasundaram R, Hamm B, Sack I (2008) Assessment of liver viscoelasticity using multifrequency MR elastography. Magn Reson 60:373–379

  11. Sack I, Beierbach B, Wuerfel J, Klatt D, Hamhaber U, Papazoglou S, Martus P, Braun J (2009) The impact of aging and gender on brain viscoelasticity. NeuroImage 46(3):652–657

    Article  PubMed  Google Scholar 

  12. Klatt D, Papazoglou S, Braun J, Sack I (2010) Viscoelasticity-based magnetic resonance elastography of skeletal muscle. Phys Med Biol 55:6445–6459

    Article  PubMed  Google Scholar 

  13. Krouskop TA, Wheeler TM, Kallel F, Garra BS, Hall T (1998) Elastic moduli of breast and prostate tissues under compression. Ultrason Imaging 20:260–274

    Article  CAS  PubMed  Google Scholar 

  14. Wellman PS, Howe RD, Dalton E, Kern KA (1999) Breast tissue stiffness in compression is correlated to histological diagnosis. PhD dissertation, Harvard University, USA

  15. Matsumura T, Umemoto T, Fujihara Y, Ueno E, Yamakawa M, Shiina T, Mitake T (2009) Measurement of elastic property of breast tissue for elasticity imaging. In: Proceedings of IEEE international ultrasonics symposium, pp 1451–1454

  16. Samani A (2009) Measurement of the hyperelastic properties of 44 pathological ex vivo breast tissue samples. Inst Phys Eng Med 54:2557–2569

    Google Scholar 

  17. Sack I, Johrens K, Wurfel J, Braun J (2013) Structure-sensitive elastography: on the viscoelastic powerlaw behavior of in vivo human tissue in health and disease. Soft Matter 9:5672–5680

    Article  CAS  Google Scholar 

  18. Tsukune M, Kobayashi Y, Hoshi T, Miyashita T, Fujie MG (2011) Evaluation and comparison of the nonlinear elastic properties of the soft tissues of the breast. In: Proceeding of the 33rd annual international conference of the IEEE Engineering in Medicine and Biology Society (EMBC2011), pp 7405–7408

  19. Tsukune M, Kobayashi Y, Hoshi T, Shiraishi Y, Yambe T, Miyashita T, Fujie MG (2012) Nonlinear reaction force analysis for characterization of breast tissues, computer aided surgery (7th Asian conference on computer aided surgery, Bangkok, Thailand, August 2011 proceedings), Proceedings in Information and Communications Technology (PICT), vol 3. Springer, Berlin, pp 125–134

  20. Tsukune M, Hatano M, Kobayashi Y, Miyashita T, Fujie MG (2013) Boundary condition generating large strain on breast tumor for nonlinear elasticity estimation. In: Proceedings of 35th annual international conference of the IEEE Engineering in Medicine and Biology Society (EMBC2013), pp 4863–4866

  21. Fung Y (1993) Biomechanics: mechanical properties of living tissues, vol 12. Springer, Berlin

    Book  Google Scholar 

  22. Marchesseau S, Heimann T, Chatelin S, Willinger R, Delingette H (2010) Fast porous visco-hyperelastic soft tissue model for surgery simulation: application to liver surgery. Prog Biophys Mol Biol 103(2–3):185–196

    Article  PubMed  Google Scholar 

  23. Kobayashi Y, Kato A, Watanabe H, Hoshi T, Kawamura K, Okamoto J, Fujie MG (2012) Modeling of viscoelastic and nonlinear material properties of liver tissue using fractional calculation. J Biomech Sci Eng 7(2):177–187

    Article  Google Scholar 

  24. Robert B, Sinkus R, Larrat B, Tanter M, Fink M (2006) A new rheological model based on fractional derivatives for biological tissues. In: Proceeding of IEEE ultrasonics symposium, pp 1033–1036

  25. Kelly JF, McGough RJ (2009) Fractal ladder models and power law wave equations. J Acoust Soc Am 126(4):2072–2081

    Article  PubMed Central  PubMed  Google Scholar 

  26. Kensinger RS, Collier RJ, Bazer FW (1986) Ultrastructural changes in porcine mammary tissue during lactogenesis. J Anat 145:49–59

    PubMed Central  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

This work was supported in part by Grants for Excellent Graduate Schools, Ministry of Education, Culture, Sports, Science and Technology of Japan (MEXT), a Grant-in-Aid of Scientific Research from MEXT (No. 26750171), Institute of Advanced Active Aging Research in Waseda University, Japan, and the Cooperative Research Project of the Institute of Development, Aging and Cancer, Tohoku University, Japan. This work received guidance from T. Hoshi (Waseda Univ., Japan), Y. Shiraishi (Tohoku Univ., Japan), T. Yambe (Tohoku Univ., Japan) and M. Hashizume (Kyushu Univ., Japan).

Conflict of interest

M. Tsukune, Y. Kobayashi, T. Miyashita and M. G. Fujie declare that they have no conflict of interest.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mariko Tsukune.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Tsukune, M., Kobayashi, Y., Miyashita, T. et al. Automated palpation for breast tissue discrimination based on viscoelastic biomechanical properties. Int J CARS 10, 593–601 (2015). https://doi.org/10.1007/s11548-014-1100-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11548-014-1100-2

Keywords

Navigation