Skip to main content

Advertisement

Log in

Resting state fMRI feature-based cerebral glioma grading by support vector machine

  • Original Article
  • Published:
International Journal of Computer Assisted Radiology and Surgery Aims and scope Submit manuscript

Abstract

Purpose 

Tumor grading plays an essential role in the optimal selection of solid tumor treatment. Noninvasive methods are needed for clinical grading of tumors. This study aimed to extract parameters of resting state blood oxygenation level-dependent functional magnetic resonance imaging (RS-fMRI) in the region of glioma and use the extracted features for tumor grading.

Methods 

Tumor segmentation was performed with both conventional MRI and RS-fMRI. Four typical parameters, signal intensity difference ratio, signal intensity correlation (SIC), fractional amplitude of low-frequency fluctuation (fALFF) and regional homogeneity (ReHo), were defined to analyze tumor regions. Mann–Whitney \(U\) test was employed to identify statistical difference of these four parameters between low-grade glioma (LGG) and high-grade glioma (HGG), respectively. Support vector machine (SVM) was employed to assess the diagnostic contributions of these parameters.

Results 

Compared with LGG, HGG had more complex anatomical morphology and BOLD-fMRI features in the tumor region. SIC \((p<0.001)\), fALFF (\(p=0.02\)) and ReHo (\(p=0.17\)) were selected as features for classification according to the test \(p\) value. The accuracy, sensitivity and specificity of SVM classification were better than 80, where SIC had the best classification accuracy (89).

Conclusion 

Parameters of RS-fMRI are effective to classify the tumor grade in glioma cases. The results indicate that this technique has clinical potential to serve as a complementary diagnostic tool.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Svolos P, Tsolaki E, Kapsalaki E et al (2013) Investigating brain tumor differentiation with diffusion and perfusion metrics at 3T MRI using pattern recognition techniques. Magn Reson Imaging 31(9):1567–1577

    Article  PubMed  Google Scholar 

  2. Pan Y (2012) The study on detection of gliomas MIB-1 index based on MRI feature. Dissertation, Zhejiang University

  3. Svolos P, Tsolaki E, Theodorou K et al (2013) Classification methods for the differentiation of atypical meningiomas using diffusion and perfusion techniques at 3-T MRI. Clin imaging 37(5):856–864

    Article  PubMed  Google Scholar 

  4. Reiche W, Schuchardt V, Hagen T, Il’yasov KA, Billmann P, Weber J (2010) Differential diagnosis of intracranial ring enhancing lesions-role of diffusion weighted imaging (DWI) and diffusion-tensor imaging (DTI). Clin Neurol Neurosurg 112(3):218–225

    Article  PubMed  Google Scholar 

  5. Beppu T, Inoue T, Shibata Y, Kurose A, Arai H, Ogasawara A, Ogawa A, Nakamura S, Kabasawa H (2003) Measurement of fractional anisotropy using diffusion tensor MRI in supratentorial astrocytic tumors. J Neurooncol 63(2):109–16

    Article  PubMed  Google Scholar 

  6. Liu X, Tian W, Kolar B, Yeaney GA, Qiu X, Johnson MD, Ekholm S (2011) MR diffusion tensor and perfusion-weighted imaging in preoperative grading of supratentorial nonenhancing gliomas. Neuro Oncol 13(4):447–55

    Article  PubMed Central  PubMed  Google Scholar 

  7. De Belder FE, Oot AR, Van Hecke W, Venstermans C, Menovsky T, Van Marck V, Van Goethem J, Van den Hauwe L, Vandekerckhove M, Parizel PM (2012) Diffusion tensor imaging provides an insight into the microstructure of meningiomas, high-grade gliomas, and peritumoral edema. Comput Assist Tomogr 36(5):577–82

    Article  Google Scholar 

  8. Tsougos I, Svolos P, Kousi E, Fountas K, Theodorou K, Fezoulidis I, Kapsalaki E (2012) Differentiation of glioblastoma multiforme from metastatic brain tumor using proton magnetic resonance spectroscopy, diffusion and perfusion metrics at 3 T. Cancer Imaging 12:423–36

    Article  PubMed Central  PubMed  Google Scholar 

  9. Jiang Z, Krainik A, David O et al (2010) Impaired fMRI activation in patients with primary brain tumors. Neuroimage 52(2):538–548

    Article  PubMed  Google Scholar 

  10. Chang EF, Clark A, Smith JS et al (2011) Functional mapping-guided resection of low-grade gliomas in eloquent areas of the brain: improvement of long-term survival: clinical article. J Neurosurg 114(3):566–573

    Article  PubMed  Google Scholar 

  11. Zacharaki EI, Kanas VG, Davatzikos C (2011) Investigating machine learning techniques for MRI-based classification of brain neoplasms. Int J Comput Assist Radiol Surg 6(6):821–828

  12. Tsolaki E, Svolos P, Kousi E et al (2013) Automated differentiation of glioblastomas from intracranial metastases using 3T MR spectroscopic and perfusion data. Int J Comput Assist Radiol Surg 8(5):751–761

    Article  PubMed  Google Scholar 

  13. Zacharaki EI, Wang S, Chawla S, Soo Yoo D, Wolf R, Melhem ER, Davatzikos C (2009) Classification of brain tumor type and grade using MRI texture and shape in a machine learning scheme. Magn Reson Med 62(6):1609–1618

  14. Dimou I, Tsougos I, Tsolaki E, Kousi E, Kapsalaki E, Theodorou K, Kounelakis M, Zervakis M (2011) Brain lesion classification using 3 T MRS spectra and paired SVM kernels. Biomed Signal Process 6(3):314–320

    Article  Google Scholar 

  15. Louis DN, Ohgaki H, Wiestler OD et al (2007) The 2007 WHO classification of tumors of the central nervous system. Acta Neuropathol 114(2):97–109

    Article  PubMed Central  PubMed  Google Scholar 

  16. Connie M, Chen CM, Hou BL, Holodny AI (2008) Effect of age and tumor grade on BOLD functional MR imaging in preoperative assessment of patients with Glioma1. Radiology 248(3):971–978

    Article  Google Scholar 

  17. Esposito R, Mattei PA, Briganti C et al (2012) Modifications of default-mode network connectivity in patients with cerebral glioma. PloS One 7(7):e40231

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  18. Zou QH, Zhu CZ, Yang Y et al (2008) An improved approach to detection of amplitude of low-frequency fluctuation (ALFF) for resting-state fMRI: fractional ALFF. J Neurosci Methods 172(1):137–141

    Article  PubMed Central  PubMed  Google Scholar 

  19. Zang YF, He Y, Zhu CZ, Cao QJ, Sui MQ, Liang M et al (2007) Altered baseline brain activity in children with ADHD revealed by resting-state functional MRI. Brain Dev 29:83–91

    Article  PubMed  Google Scholar 

  20. Liu D, Yan C, Ren J et al (2010) Using coherence to measure regional homogeneity of resting-state fMRI signal. Front Syst Neurosci 4:24

    PubMed Central  PubMed  Google Scholar 

  21. Long XY, Zuo XN, Kiviniemi V, Yang Y, Zou QH, Zhu CZ, Jiang TZ, Yang H, Gong QY, Wang L, Li KC, Xie S, Zang YF (2008) Default mode network as revealed with multiple methods for resting state functional MRI analysis. J Neurosci Methods 171:349–355

    Article  PubMed  Google Scholar 

  22. Song XW, Dong ZY, Long XY, Li SF, Zuo XN et al (2011) REST: a toolkit for resting-state functional magnetic resonance imaging data processing. PLoS One 6(9):e25031

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  23. Cortes C, Vapnik V (1995) Support-vector networks. Mach Learn 20(3):273–297

    Google Scholar 

  24. Scholkopf B, Sung KK, Burges CJC et al (1997) Comparing support vector machines with Gaussian kernels to radial basis function classifiers. Trans Signal Process 45(11):2758–2765

    Article  Google Scholar 

  25. Hsu CW, Chang CC, Lin CJ (2003) A practical guide to support vector classification

  26. Metz CE (1989) Some practical issues of experimental design and data analysis in radiological ROC analysis. Invest Radiol 24(3):234–245

    Article  CAS  PubMed  Google Scholar 

  27. Fawcett T (2006) An introduction to ROC analysis. Pattern Recognit Lett 27(8):861–874

    Article  Google Scholar 

  28. Lüdemann L, Förschler A, Grieger W et al (2006) BOLD signal in the motor cortex shows a correlation with the blood volume of brain tumors. J Magn Reson Imaging 23(4):435–443

    Article  PubMed  Google Scholar 

  29. olodny AI, Schulder M, Liu WC et al (2000) The effect of brain tumors on BOLD functional MR imaging activation in the adjacent motor cortex: implications for image-guided neurosurgery. Am J Neuroradiol 21(8):1415–1422

    Google Scholar 

  30. Schreiber A, Hubbe U, Ziyeh S et al (2000) The influence of gliomas and nonglial space-occupying Lesions on Blood-oxygen-level-dependent contrast enhancement. Am J Neuroradiol 21(6):1055–1063

  31. Liu WC, Feldman SC, Schulder M et al (2005) The effect of tumour type and distance on activation in the motor cortex. Neuroradiol 47(11):813–819

    Article  Google Scholar 

  32. Price SJ (2010) Advances in imaging low-grade gliomas. In: Low-grade gliomas. Springer, Berlin, pp 1–34

  33. Zonari P, Baraldi P, Crisi G (2007) Multimodal MRI in the characterization of glial neoplasms: the combined role of single-voxel MR spectroscopy, diffusion imaging and echo-planar perfusion imaging. Neuroradiol 49(10):795–803

    Article  Google Scholar 

  34. Biswal BB, Mennes M, Zuo XN et al (2010) Toward discovery science of human brain function. Proc Natl Acad Sci 107(10):4734–4739

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  35. Shehzad Z, Kelly AMC, Reiss PT et al (2009) The resting brain: unconstrained yet reliable. Cereb cortex 19(10):2209–2229

    Article  PubMed Central  PubMed  Google Scholar 

  36. Zhang D, Raichle ME (2010) Disease and the brain’s dark energy. Nat Rev Neurol 6(1):15–28

    Article  PubMed  Google Scholar 

  37. Batjer HH, Loftus CM (2002) Textbook of neurological surgery: principles and practice. Lippincott Williams & Wilkins, New York

    Google Scholar 

  38. Cao Q, Zang Y, Sun L, Sui M, Long X, Zou Qand Wang Y (2006) Abnormal neural activity in children with attention deficit hyperactivity disorder: a resting-state functional magnetic resonance imaging study. Neuroreport 17(10):1033–1036

    Article  PubMed  Google Scholar 

  39. Cheng W, Ji X, Zhang J et al (2012) Individual classification of ADHD patients by integrating multiscale neuroimaging markers and advanced pattern recognition techniques. Front Syst Neurosci 6:58

  40. He Y, Wang L, Zang Y, Tian L, Zhang X, Li K, Jiang T (2007) Regional coherence changes in the early stages of Alzheimer’s disease: a combined structural and resting-state functional MRI study. Neuroimage 35(2):488–500

    Article  PubMed  Google Scholar 

  41. Wu T, Long X, Zang Y, Wang L, Hallett M, Li K, Chan P (2009) Regional homogeneity changes in patients with Parkinson’s disease. Hum Brain Mapp 30(5):1502–1510

    Article  PubMed  Google Scholar 

  42. He Z, Deng W, Li M et al (2012) Aberrant intrinsic brain activity and cognitive deficit in first-episode treatment-naive patients with schizophrenia. Psychol Med 43:769–780

    Article  PubMed  Google Scholar 

  43. Liu CB, Pan Y, Zhang HS et al (2012) Detecting MGMT expression status of glioma with magnetic resonance image. J Zhejiang Univ Eng Sci 46(1):170–176

    Google Scholar 

  44. Emblem KE, Zoellner FG, Tennoe B et al (2008) Predictive modeling in glioma grading from MR perfusion images using support vector machines. Magn Reson Med 60(4):945–52

    Article  PubMed  Google Scholar 

  45. Gómez C, Stam CJ, Hornero R et al (2009) Disturbed beta band functional connectivity in patients with mild cognitive impairment: an MEG study. IEEE Trans Biomed Eng 56(6):1683–1690

    Article  PubMed  Google Scholar 

  46. Bhardwaj RD, Mahmoodabadi SZ, Otsubo H et al (2010) Diffusion tensor tractography detection of functional pathway for the spread of epileptiform activity between temporal lobe and Rolandic region. Childs Nerv Syst 26(2):185–190

    Article  PubMed  Google Scholar 

  47. Nucifora PGP, Verma R, Lee SK et al (2007) Diffusion-tensor MR imaging and tractography: exploring brain microstructure and connectivity. Radiology 245(2):367–84

    Article  PubMed  Google Scholar 

  48. Lee MH, Smyser CD, Shimony JS (2013) Resting-state fMRI: a review of methods and clinical applications. Am J Neuroradiol 34(10):1866–1872

    Article  CAS  PubMed Central  PubMed  Google Scholar 

Download references

Acknowledgments

This research was supported by the Natural Science Foundation of China (Grant No: 61075107), the Special Project of Clinical medical science and technology in Jiangsu Province (BL201204).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ling Tao.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wu, J., Qian, Z., Tao, L. et al. Resting state fMRI feature-based cerebral glioma grading by support vector machine. Int J CARS 10, 1167–1174 (2015). https://doi.org/10.1007/s11548-014-1111-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11548-014-1111-z

Keywords

Navigation