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Abstract

Purpose—Morphometry techniques were applied to quantify the normal tissue therapy response 

in patients receiving whole-brain radiation for intracranial malignancies.

Methods—Pre- and Post-irradiation magnetic resonance imaging (MRI) data sets were 

retrospectively analyzed in N = 15 patients. Volume changes with respect to pre-irradiation were 

quantitatively measured in the cerebrum and ventricles. Measurements were correlated with the 

time interval from irradiation. Criteria for inclusion included craniospinal irradiation, pre-

irradiation MRI, at least one follow-up MRI, and no disease progression. The brain on each image 

was segmented to remove the skull and registered to the initial pre-treatment scan. Average 
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volume changes were measured using morphometry analysis of the deformation Jacobian and 

direct template registration-based segmentation of brain structures.

Results—An average cerebral volume atrophy of −0.2 and −3 % was measured for the 

deformation morphometry and direct segmentation methods, respectively. An average ventricle 

volume dilation of 21 and 20 % was measured for the deformation morphometry and direct 

segmentation methods, respectively.

Conclusion—The presented study has developed an image processing pipeline for 

morphometric monitoring of brain tissue volume changes as a response to radiation therapy. 

Results indicate that quantitative morphometric monitoring is feasible and may provide additional 

information in assessing response.

Keywords

Image registration; Radiation therapy response; Morphometry; Diffeomorphism; Computational 
anatomy

Introduction

Approximately 211,000 patients present each year in the USA with brain tumors. Of these, 

38,000 are benign primary tumors, 23,000 primary malignant tumors, and 150,000 

metastatic cancer, originating largely from lung, breast, and melanoma [20,27]. The average 

life expectancy for patients with primary and metastatic malignancies in the brain, from time 

of diagnosis until death, is approximately 12–16 months. Five-year survival for primary 

brain malignancies is among the lowest of all cancers. Current treatment options are 

aggressive and typically include maximal surgical resection, stereotactic radiosurgery (SRS), 

and/or chemotherapy.

Increasingly effective therapies for treating malignancies in the brain is creating a growing 

population of survivors with cognitive impairment as a side effect of treatment. Since 

cognitive impairment can significantly impair quality of life and independence, therapeutic 

strategies to minimize radiation-induced cognitive impairment are becoming more 

important. The possibility of incurring toxicity that may impair the patients quality of life is 

increasingly influencing the choice of therapeutic modality. Although state-of-the-art 

radiation therapy techniques have nearly eliminated acute brain injury, cognitive impairment 

occurs in 50–90 % of patients who survive >6 months post-irradiation. This has resulted in 

over 100,000 patients yearly with intracranial malignancies who live long enough to develop 

irreversible radiation-induced brain injury [17]. In a period greater than 6 months, excluding 

identifiable tumor recurrence, complications of radiotoxicity include cognitive impairment, 

dizziness, fatigue, headache, mood changes, progressively severe dementia, gait disturbance, 

and incontinence.

Quantification of the radiation therapy response of normal tissue as well as malignant tissue 

has received significant attention [6,13,17,29]. This study develops an image processing 

pipeline to quantify the structural response associated with whole-brain radiation therapy. 

The success of image registration-based morphometry techniques in identifying key 
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structural patterns associated with Alzheimer’s disease [22], schizophrenia [9], and 

abnormal brain development [34] motivates the developed approach.

Previous efforts have reported radiation-induced structural response in longitudinal CT and 

MR imaging studies [2,15,23,25,28,31,38]. Nieder et al. [28] measured ventricular dilation 

in millimeters from the laterolateral diameter; sulcal enlargement was qualitatively reported 

(N = 49 adult patients, age ≥18, median follow-up imaging = 10 months). However, the 

measured CT changes did not correlate with clinical symptoms of late radiation toxicity. 

Asai et al. [2] reported ventricle enlargement, widening of the cortical sulci, and attenuated 

CT numbers in white matter for N = 6 patients. Similarly, DeAngelis et al. [15] reported 

cortical atrophy and hypodense white matter in N = 12 patients. Zhang et al. [38] reported 

reduced density in gray and white matter using voxel-based morphometry techniques in N = 

13 patients. Higher-level cognitive skills are known to be affected, suggesting that the 

cerebral cortex is affected by the therapy [23]. A decrease in white matter has also been 

correlated with radiation dose [25,31]. Multiple authors [1,24,35] have suggested avoidance 

of critical neuroanatomical targets such as the hippocampus and temporal lobes may 

preserve specific cognitive functions such as memory or protect special cell populations 

such as neural stem cells.

Within the context of this study, deformation-based morphometry is applied to MR images 

for quantitative analysis of volumetric anatomical changes in response to radiation therapy. 

The developed image processing pipeline provides quantitative information for further 

evaluation of correlated toxicities. Nonlinear deformable image registration techniques align 

all images within a longitudinal MRI study. The applied morphometry techniques provided 

quantitative measurements of the ventricular dilation as well as cerebral atrophy. The 

statistical significance of the anatomical volume change measurements is evaluated in N = 

15 patients.

Methods

Image processing pipeline

A reference atlas or template is widely used within the field of neuroimaging to provide a 

standardized neuroanatomical space and probability priors for multiple segmentation 

methods [5]. Template-based segmentation is used within this study to facilitate 

morphometry calculations within the ventricles and cerebrum. As seen in Fig. 1, a 

deformation-based morphometry analysis pipeline was created in which post-treatment 

imaging was registered to the initial pre-treatment scan. The ICBM (International 

Consortium for Brain Mapping) high-resolution image and its label map were downloaded 

from the Laboratory of Neuro Imaging (LONI). A separate label map for the cerebrum and 

ventricles was created for this study by merging the corresponding labels of the ICBM label 

map. Segmentations of the initial pre-treatment image for each patient were generated from 

the image registration displacement field mapping the template to the respective pre-

treatment image. The integral of the Jacobian determinant values of the displacement field 

was calculated across each segmented region of the label map to determine quantitative 

percent volume change, see Eq. (2). Representative images of the major steps of the pipeline 

are shown in Fig. 2.
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The accuracy of the registration-based segmentation was quantitatively evaluated against 

manual segmentations of the pre-treatment image for each patient. Errors observed in the 

labels of the cerebrum and ventricles were manually corrected on the baseline pre-treatment 

image by a medical expert. The Dice similarity coefficient [39], , was 

used calculate the overlap of the template-based segmentation, A ⊂ ℝ3, and the manual 

segmentation, B ⊂ ℝ3. The DSC was calculated in both the ventricles and cerebrum.

A direct registration-based segmentation of brain structures was also implemented in which 

the template was registered to each time point within the longitudinal study. Volume 

changes within the anatomical structures of interest for each patient may be directly 

determined from the volume information contained within the deformed label map. In 

addition to the Jacobian-based method, the analysis provides a second measure of the 

percent volume change observed, Eq. (2).

Brain extraction for each image was performed using the Brain Extraction Tool [19] to 

create a binary label mask which was then corrected manually using the GUI interface 

provided by itk-SNAP [37]. Each extracted brain was treated with N4 bias field correction 

[4] prior to registration to remove shading artifacts. Application of the bias field correction 

algorithm results in a bimodal distribution of intensity values within the T1W images due to 

the amplification of the individual distributions of the white and gray matter. Increase 

uniformity of the intensity values across the white and gray matter is visually confirmed.

Image registration

The presented deformation morphometry pipeline applies modern diffeomorphic image 

registration methods to measure the volume change. These techniques have been 

significantly influenced by the mathematical formalism of large deformation 

diffeomorphisms [7,14,16]. The diffeomorphic formalism provides a rigorous framework for 

finding a deformation field that satisfies the physics of an elastic or fluid deformation and 

guarantees sufficient smoothness expected of biological deformations. Diffeomorphic 

registration techniques rely on defining a differentiable, bijective mapping between the fixed 

and moving image and guarantee that the inverse displacement fields and Jacobian-based 

volume measurements will be well defined. The regularity on the solution imposed within 

the diffeomorphic framework preserves the topology of the brain and prevents the 

deformation in an uncontrolled manner which would otherwise make results difficult to 

interpret.

The well-known large deformation diffeomorphic metric mapping (LDDMM) algorithm [7] 

yields a geodesic solution that conforms to the space of diffeomorphic transformations. 

However, floating point operation and memory costs increase with multiple partial 

differential equation solves and image gradient calculations needed at each integration time 

point required by the diffeomorphic transformation. The symmetric normalization (SyN) 

approach [3,4] is a popular variant of the diffeomorphic transformation and is used in this 

study. A Gaussian convolution within the SyN approach provides a computationally 

efficient approximation for the physics of the deformation field [8,33]. SyN calculates image 

gradients only at the midpoint in time of the full diffeomorphic transformation and provides 
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an explicit symmetry of the large deformation diffeomorphic metric mapping (LDDMM) 

formulation [7]. The distance between the current image, I, and reference image, J, mapped 

into the transformation midpoint provides an estimate of the image similarity and 

performance measure of the registration. Under a linear intensity transformation, i.e., I ≈ α J 

+ β, the correlation coefficient (CC) is known to be optimal [18] and a localized version (1) 

was used in this study for the bias field corrected images.

(1)

The neighborhood radius, Nr, in computing cross-correlation was 5 voxels.

Specifically, the greedy SyN, ‘GR,’1, available from the ANTs package [3,4] was used. 

Algorithmic details may be found in [4,36]. The registration consisted of (1) an affine 

registration step and (2) a diffeomorphic step. A multi-resolution approach was applied in 

both steps. Intuitively, the lowest resolutions are computationally efficient and capture bulk 

movement. Each resolution increasingly recovers more fine-scale features. A five-level and 

three-level image pyramids were applied to the affine registration and diffeomorphic 

registration steps, respectively. The default gradient descent was used in the optimization of 

the affine and diffeomorphic registration. A Gaussian regularization kernel with an isotropic 

width of 3 voxels was used as an estimate of the Green’s kernel for the deformation operator 

and is further discussed in the Appendix.

The ANTs software is developed under significant open source infrastructure to facilitate 

reproducible research and includes significant documentation, working examples, and 

scripts used in previous successful studies [21,26]. The portable CMake build system, 

software version control, and unit testing environment provide quality assurance in the 

numerical results of the algorithms. Verbatim command line parameters used in previous 

studies, as well as this study, are available and provide confidence that the intended 

numerical algorithms, in which significant resources have been invested, are being properly 

applied in this study.

Assuming a constant volume, such as within the skull, the volume of an anatomical region 

of interest at a particular time instance may be related back to the reference image at t = 0 

using the classical change in variables for integration. On a pixelated image, the volume 

[mm3] of a labeled region is the product of the number of voxels in the segmentation, NS, 

and the volume per voxel, ΔV. The new volume [mm3] at time t = τ may be calculated by 

integrating the Jacobian, J, of the deformation, φ, over the segmented region. The average 

Jacobian may be related to the percent volume change, μ.

1ANTS -s CC[${fixed}${moving},1,5] -t SyN[0.25] -r Gauss[3,0] -i 30x90x20 –use-Histogram-Matching–number-of-affine-
iterations10000x10000x10000x10000x10000 –MI-option 32x16000.
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(2)

Statistical analysis

Statistical analysis was computed using the R package [30]. A one-sided t-test was used to 

evaluate percent volumetric changes (2) from the baseline pre-treatment scans. One-sample 

calculations were computed using zero percent change, H0 : μ = 0, as the null hypothesis. As 

seen in Eq. (2), an integral Jacobian value greater than one implies expansion or dilation; a 

value less than one implies tissue atrophy or contraction. Correlation analysis was performed 

to assess relationships between the measured volume changes, radiation dose, and time lapse 

since radiation exposure. Correlation coefficients, r, were computed using a Spearman 

method. A one-sample t-test for the correlation coefficient was computed to estimate 

statistically significant correlation changes from zero.

Image data

Patients that were diagnosed with intracranial medulloblastoma and received a uniform 

whole-brain radiation to the cerebrum were identified under an institutionally approved IRB 

protocol for retrospective studies. Similar to CT imaging studies [2,15,28], the volume 

changes reported by the deformation-based morphometry are considered as the volume 

response of the combined gray and white matter within the cerebrum. Volume response in 

the ventricles is also considered. Criteria for inclusion in our study included craniospinal 

irradiation, pre-irradiation magnetic resonance imaging (MRI), at least one follow-up MRI, 

and no disease progression during follow-up. Summary statistics for the selected patient 

cohort is presented in Fig. 3.

At each time instance, axial T1-weighted images (median TR/TE = 550 ms/9 ms, 

1mm×1mm pixel size, slice thickness 5 mm) were selected from the routine imaging 

protocols to assess the response of radiation therapy for treating patients with 

medulloblastoma.

Results

Representative study time instances and deformation-based segmentations for morphometry 

analysis are shown in Fig. 2. Registration of the template to a specific patient image at the 

initial pre-treatment scan of the study is shown in Fig. 2a. Figure 2b shows the manual label 

map of the cerebrum and ventricles for the pre-treatment image. The DSC values used to 

quantitatively evaluate the accuracy of the template registration-based segmentation against 

the manual segmentation are presented for the pre-treatment image of each patient in Fig. 

4b. Figure 2c illustrates the same patient observed during a follow-up MR scan. For this 

particular case, the follow-up MR scan was 347 days post-irradiation and the ventricles have 

visibly dilated compared with the pre-treatment scan, Fig. 2b. Similar to the deformable 

registration-based cerebrum and ventricle segmentations shown in Fig. 2a, template-based 

Fuentes et al. Page 6

Int J Comput Assist Radiol Surg. Author manuscript; available in PMC 2015 October 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



segmentation of the follow-up image shown Fig. 2c provides volume change. Registration of 

Fig. 2b–c provides a second measure of the volume change observed using the Jacobian of 

the deformation field. A summary of the volume change characteristics for the patient cohort 

is presented in Figs. 4a and 5.

Statistics observed in the patient cohort of the analysis is shown in the scatter plots in Fig. 5. 

For reference, a dotted line for zero volume change is plotted. Figure 5a–c represents results 

from the deformation morphometry-based Jacobian analysis in which each patient image 

was registered to the respective pre-treatment image and template registration-based 

segmentation was applied to the pre-treatment image. Figure 5d–f represents results from the 

direct analysis in which the template was registered to each image within the analysis and 

volume changes were interpreted directly from the volumes of the individual labels. The 

time instance of the follow-up MRI is taken with respect to the completion of the dose 

delivery for each patient. The hypothesis testing framework for the direction of the one-

sided statistical inference is provided with each graph.

Figure 5a, d plots the correlations between the measured cerebral atrophy and radiation dose. 

Figure 5b, e plots the correlations between the measured cerebral atrophy and the time 

instance of the follow-up MR image. An average cerebral volume decrease of −0.2 and −3 

% was measured for the deformation morphometry and direct methods, respectively. 

Statistically significant p values were observed in the t tests considered for the volume 

change in the direct method, p < 0.05. Cerebral volume loss was inversely correlated with 

amounts of irradiation, r = −0.51/−0.42, and inversely correlated with time since the initial 

scan, r = −0.10/−0.27.

Similarly, scatter plots Fig. 5c, f plot the correlations between the measured ventricle 

dilation and the time instance of the follow-up MR image. An average ventricle volume 

increase of 21 and 20 % was measured for the deformation morphometry and direct 

methods, respectively. Cerebral volume dilation was correlated with time since the initial 

scan, r = 0.28/0.31. Statistically significant p-values were observed for the t-test and 

correlation test considered, p < 0.05.

Discussion

Deformation morphometry-based image analysis techniques were applied to quantitatively 

measure anatomical volume change in brain as a therapy response in patients receiving 

whole-brain radiation for treating medulloblastoma. Sixty-one post-irradiation magnetic 

resonance imaging (MRI) data sets were retrospectively analyzed in N = 15 patients. 

Volume changes measured from (1) template-based segmentation at each time point in the 

longitudinal study and (2) intra-patient Jacobian determinant analysis at multiple time points 

post-irradiation both show promise as a quantitative imaging biomarker of the therapy. 

Quantitative morphometry measurements of ventricle dilation and cerebral atrophy agree 

with observations of previous longitudinal imaging studies [2,23,28,38].

The measured atrophy in the cerebrum and dilation in the ventricles within the patient cohort 

chosen, age [min, max] = [14, 60], is unlikely attributed to natural aging within the time 
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period of this study, max time 390 days. Classical growth curves of the developing brain 

show the brain reaches 90 % of its maximum volume during the first five years of 

development [32]. Further, the volume of the skull is expected to be fixed after 6 year of age 

in which the cranial sutures are closed; an increase in ventricle volume likely corresponds to 

cerebrum atrophy. The brain is expected to have asymptotically reached the fully developed 

volume within the patient cohort studied; age-related bias and registration inaccuracies that 

may be attributed to anatomical differences between a developing brain and the image 

template used in this study are unlikely. However, significant further work is needed in 

establishing and processing an age-matched control cohort of normal patients as a 

quantitative reference for the radiation-induced volume change.

An isotropic 1-mm image template was repeatedly registered to the MRI of each patient at 

multiple time points. This provided a registration-based segmentation of the cerebrum and 

ventricles for each image including the initial time point for Jacobian determinant analysis. 

The template-based analysis implicitly assumes that the anatomical structures of the brain 

are faithfully preserved under the diffeomorphic registration with the routine protocol 

imaging data used in this study. Although current results demonstrate the potential of 

morphometry techniques to quantitatively measure the brain tissue response to radiation 

therapy, registration inaccuracies are expected to limit the applicability of this approach and 

are likely responsible for the noisy measurements observed. For example, under ideal 

conditions, both deformation-based morphometry and direct segmentation techniques are 

expected to provide the same quantitative information. The relatively larger variance in the 

statistics of the direct segmentation approach, Fig. 5d–f, indicates larger potential 

registration inaccuracies between the template and each individual time point as compared 

to intra-patient registrations. The segmentation error, as measured by the DSC Fig. 4b for 

the initial time point, is likely to have accumulated due to the segmentation at each time 

point and results in the greater variance for the direct segmentation approach. A larger DSC 

accuracy is observed in the cerebrum compared with the ventricle and indicates a relatively 

larger volume fraction error in the ventricles. An example of the segmentation error is 

qualitatively observed in Fig. 2a. Similar to large-scale Alzheimer’s studies [34], future 

efforts should strive to prospectively implement a strict imaging protocol on isotropic 

imaging data sets to enhance the accuracy of the statistical measurements.

The dilation observed in the ventricles, as measured by the deformation-based morphometry 

seen in Fig. 5c, provided the strongest signal in measuring the response to radiation therapy. 

Although less than zero, the volume change in the cerebrum was a relatively weaker signal. 

Visual inspection indicates that resolving registration inaccuracies in the gyri in future 

studies may further improve the signal. However, further efforts are needed to quantitatively 

determine sources of registration inaccuracy. Currently, the spatial recognition patterns of 

the human brain are considered the gold standard for registering a given set of images using 

landmark feature pairs [12] or segmenting identifiable structures [21]. Expert determined 

landmark feature pair correspondences have been shown to provide an accurate and 

repeatable spatial registration [11,12]. Generation of these data sets requires >40 man hours 

from a labor-intensive, meticulous and combined effort of expert and secondary observers to 

achieve a high-quality mapping of selected feature images and is outside the scope of this 

study. Future validations efforts involving these high-quality data sets promise to provide 
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rigorous evaluation of the accuracy of the computer-generated solution; quantification of 

potential errors induced from the algorithmic approximations will provide quantitative 

confidence levels of the measured morphometry statistics. The effect of multiple image 

templates on the fidelity of the morphometry measurements should also be carefully studied. 

This will extend the analysis to a statistical setting in which probability maps are provided 

for the segmentations. Parallelized GPU-based algorithms [10] will also be useful in 

performing future morphometry studies on larger patient cohorts with multiple templates in 

an acceptable time frame on commodity resources.

Conclusion

A deformation morphometry image processing pipeline has been developed for monitoring 

of brain tissue volume changes as a response to radiation therapy. Results indicate that 

quantitative morphometric monitoring is feasible. Further efforts investigating correlations 

of quantitative volume change information with radiation dose, age, and cognitive studies 

may provide insight into monitoring the efficacy of new therapeutic approaches and 

analyzing toxicity.
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Appendix: Gaussian approximation of the Green’s Kernel

Following a diffeomorphic image registration framework [4, 7,14], consider two images, I0 

and I1, defined on an Eulerian reference domain, Ω ⊂ ℝ3. The goal of the image registration 

is to determine the motion, φ(x, t) : Ω × [0, 1] → Ω, that maps the reference image, I0, to the 

current image, I1.

A symmetric diffeomorphic registration is optimal with respect to a given image similarity 

metric, d : Ω × Ω → ℝ, and penalized by the velocity of the transformation.

(3)

Here, the deformations, φi, i = 1, 2, are defined with respect to the midpoint, t = .5, of the 

transformation. Time is parameterized in opposite directions between φ1 and φ2. The 

operator norm ||·||L is induced by a differential operator of the type, L = αΔ + I d, α ∈ ℝ [7]. 

The symmetric diffeomorphic formulation mappings are constructed sufficiently smooth 

such that the inverse of the motion is well defined, φ−1(x, t) : Ω × [0, 1] → Ω, and gives a 

consistent solution for the forward and inverse mapping, φ ∘ φ−1 = I d.

The Euler–Lagrange equations provide necessary conditions for which a solution of the 

optimization formulation (3) must satisfy.
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(4)

Here, the gradient of the objective function (3) is with respect to the velocity of the 

transformation. The operator L represents a physics constraint on the deformation solution. 

Assuming the deformation behaves as a viscous fluid provides an intuitive solution field that 

may be understood to adhere to first principle conservation laws.

(5)

Further, compared with linear elastic displacement models that constrain the accuracy of 

large deformations because of internal elastic strain, accurate large deformations may be 

achieved within this viscous fluid model because internal forces disappear over time and the 

desired deformation can be fully achieved [8]. However, this approach leads to 

computationally expensive numerical solution schemes that couple the individual 

components of the deformation. Alternatively, assuming each deformation component is 

decoupled and diffuses along the respective gradient of the deformation field yields the 

algorithmically and numerically tractable Gaussian convolution kernel used in SyN [4]. The 

greedy update at the midpoint in time simplifies to a fixed point iteration on the velocity 

field [36], and the transformation field is iteratively updated through a finite difference 

approximation of the velocity

(6)

Here, K ★ represents the Gaussian convolution operation and is obtained from a Fourier 

transform solution of the heat equation. Solutions of the Euler–Lagrange equations may be 

interpreted as a decoupled component-wise solution to a isotropic heat transfer equation 

with initial conditions given by the gradient of the similarity metric.
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Fig. 1. 
Overview of image processing pipeline. The time instance of the initial MR scan (prior to 

radiation therapy) for each patient is denoted ‘pre-treatment.’ A spatially uniform whole-

brain radiation dose is delivered in multiple fractions following the pre-treatment scan. Post-

treatment MR scans are taken at non-uniform time intervals, t > 0, with respect to the 

completion of the dose delivery. Details of the radiation dose, delivery time, and the time 

instance of the follow-up MR images are provided in Fig. 3. Post-treatment MR scans for 

each patient are registered to the initial pre-treatment scan. Relative volume change 

information was measured at each voxel of the pre-treatment image using the determinant of 

the displacement field Jacobian. Registration-based segmentation of the template image 

shown is used to compute the average value of the volume change observed in ventricles and 

the combined gray and white matter within the cerebrum
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Fig. 2. 
Representative images. Representative images for the processing pipeline from Fig. 1 are 

shown. Each image is skull stripped and bias corrected. The image template and 

corresponding cerebrum and ventricle labels are registered to the pre-treatment image for 

each patient. a An example of the image registration-based segmentation of the cerebrum 

and ventricles is shown. Statistics for the Jacobian maps as well as direct volume 

measurements is obtained using the labeled ventricles and cerebrum shown. An error noted 

in the registration-based segmentation is marked ‘×.’ b Errors observed in the labels of the 

cerebrum and ventricles were manually corrected on the baseline pre-treatment image by a 

medical expert for evaluation of the segmentation accuracy. c An example of the follow-up 

image, corresponding to (b), is shown; time = 347 days post-irradiation. The ventricle size 

has noticeably increased. Follow-up images are registered to both the pre-treatment image 

and the template. Registration to the pre-treatment image provides deformation Jacobian 

information that may be used to quantify volume change (2). Similarly, registration to the 

image template provides a direct estimate of volume change information
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Fig. 3. 
Patient cohort summary statistics (N = 15). A summary of the patient imaging times 

considered in this study is presented. The imaging times (day) of the 61 post-treatment 

images are denoted ‘*’ and shown relative to the completion of dose delivery, t = 0. The 

total time (day) and total dose (Gy) delivered for the fractionated therapy are also presented. 

Min/Median/Max summary statistics are: age (year) 14/26/60, dose (Gy) 21.6/30.6/36, 

treatment time (day) 33/42/53, and post-imaging (day) 3/154/390
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Fig. 4. 
Analysis summary. The average Jacobian measurements from each post-treatment image 

included in the deformation morphometry analysis are shown in (a). Measurements and 

DSC calculations are aligned horizontally with the respective patient and correspond to Fig. 

3. The left and right axes plot the measurements for the cerebrum ‘×’ and ventricles ‘+,’ 

respectively. DSC calculations comparing manual segmentations of the pre-treatment image 

of each patient to the registration-based segmentation approach are presented in (b). Min/

Median/Max summary statistics in the ventricles and cerebrum are: DSC (ventricle) 

0.67/0.72/0.79 and DSC (cerebrum) 0.91/0.94/0.96
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Fig. 5. 
Volume change summary. A summary of the volume changes, μ, see Eq. (2), observed in the 

cerebrum and ventricles as well as correlation, r, with radiation dose and time instance of the 

follow-up MR imaging is presented. a–c Represent results from the deformation 

morphometry-based Jacobian analysis in which each patient image was registered to the 

respective pre-treatment image and template registration-based segmentation was applied to 

the pre-treatment image. d–f Represent results from the direct analysis in which the template 

was registered to each image within the analysis. The computed correlations coefficients, r, 

as well as p values estimating statistically significant correlation changes from zero are 

provided below each graph. t test results estimating statistically significant atrophy and 

dilation are also provided
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