Skip to main content
Log in

Intramyocardial strain estimation from cardiac cine MRI

  • Original Article
  • Published:
International Journal of Computer Assisted Radiology and Surgery Aims and scope Submit manuscript

Abstract

Purpose

Functional strain is one of the important clinical indicators for the quantification of heart performance and the early detection of cardiovascular diseases, and functional strain parameters are used to aid therapeutic decisions and follow-up evaluations after cardiac surgery. A comprehensive framework for deriving functional strain parameters at the endocardium, epicardium, and mid-wall of the left ventricle (LV) from conventional cine MRI data was developed and tested.

Methods

Cine data were collected using short TR-/TE-balanced steady-state free precession acquisitions on a 1.5T Siemens Espree scanner. The LV wall borders are segmented using a level set-based deformable model guided by a stochastic force derived from a second-order Markov–Gibbs random field model that accounts for the object shape and appearance features. Then, the mid-wall of the segmented LV is determined based on estimating the centerline between the endocardium and epicardium of the LV. Finally, a geometrical Laplace-based method is proposed to track corresponding points on successive myocardial contours throughout the cardiac cycle in order to characterize the strain evolutions. The method was tested using simulated phantom images with predefined point locations of the LV wall throughout the cardiac cycle. The method was tested on 30 in vivo datasets to evaluate the feasibility of the proposed framework to index functional strain parameters.

Results

The cine MRI-based model agreed with the ground truth for functional metrics to within 0.30 % for indexing the peak systolic strain change and 0.29 % (per unit time) for indexing systolic and diastolic strain rates. The method was feasible for in vivo extraction of functional strain parameters.

Conclusion

Strain indexes of the endocardium, mid-wall, and epicardium can be derived from routine cine images using automated techniques, thereby improving the utility of cine MRI data for characterization of myocardial function. Unlike traditional texture-based tracking, the proposed geometrical method showed the ability to track the LV wall points throughout the cardiac cycle, thus permitting more accurate strain estimation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

Abbreviations

2D/3D/4D:

Two-/three-/four-dimensional

CMRI:

Cardiac MRI

GT:

Ground truth

FE:

Finite element

HARP:

Spectral analysis harmonic phase

IRB:

Institutional review board

MGRF:

Markov–Gibbs random field

MRI:

Magnetic resonance imaging

PDE:

Partial differential equation

TE:

Echo time

TR:

Repetition time

References

  1. Murphy SL, Xu JQ, Kochanek KD (2013) Deaths: final data for 2010. Natl Vital Stat Rep 61(4):1–118

  2. Henein MY (2010) Heart failure in clinical practice. Springer, London

    Book  Google Scholar 

  3. Dandel M, Lehmkuhl H, Knosalla C, Suramelashvili N, Hetzer R (2009) Strain and strain rate imaging by echocardiography—basic concepts and clinical applicability. Curr Cardiol Rev 5(2):133–148

    Article  PubMed Central  PubMed  Google Scholar 

  4. Hoit BD (2011) Strain and strain rate echocardiography and coronary artery disease. Circul Cardiovasc Imaging 4(2):179–190

    Article  Google Scholar 

  5. Nitzken M, Beache G, Elnakib A, Khalifa F, Gimel’farb G, El-Baz A (2012) Accurate modeling of tagged CMR 3D image appearance characteristics to improve cardiac cycle strain estimation. In: Proceedings of the IEEE international conference on image processing (ICIP’12), Orlando, Florida, USA, pp 521–524

  6. Hirsch S, Posnansky O, Papazoglou S, Elgeti T, Braun J, Sack I (2013) Measurement of vibration-induced volumetric strain in the human lung. Magn Reson Med 69(3):667–674

    Article  PubMed  Google Scholar 

  7. Bloomgarden DC, Fayad ZA, Ferrari VA, Chin B, Sutton MG, Axel L (1997) Global cardiac function using fast breath-hold MRI: validation of new acquisition and analysis techniques. Magn Reson Med 37(5):683–692

    Article  CAS  PubMed  Google Scholar 

  8. Ledesma-Carbayo MJ, Kybic J, Desco M, Santos A, Suhling M, Hunziker P, Unser M (2005) Spatio-temporal nonrigid registration for ultrasound cardiac motion estimation. IEEE Trans Med Imaging 24:1113–1126

    Article  PubMed  Google Scholar 

  9. Elen A, Choi HF, Loeckx D, Gao H, Claus P, Suetens P, Maes F, D’hooge J (2008) Three-dimensional cardiac strain estimation using spatio-temporal elastic registration of ultrasound images: a feasibility study. IEEE Trans Med Imaging 27:1580–1591

    Article  PubMed  Google Scholar 

  10. Arias-Godínez JA, Guadalajara-Boo JF, Patel AR, Pandian NG (2011) Function and mechanics of the left ventricle: from tissue Doppler imaging to three dimensional speckle tracking. Arch Cardiol Mex 81(2):114–125

    PubMed  Google Scholar 

  11. Dandel M, Hetzer R (2009) Echocardiographic strain and strain rate imaging—clinical applications. Int J Cardiol 132(1):11–24

    Article  PubMed  Google Scholar 

  12. Amundsen BH, Helle-Valle T, Edvardsen T, Torp H, Crosby J, Lyseggen E, Støylen A, Ihlen H, Lima JAC, Smiseth OA, Slørdahl SA (2006) Noninvasive myocardial strain measurement by speckle tracking echocardiographyValidation against sonomicrometry and tagged magnetic resonance imaging. J Am Coll Cardiol 47(4):789–793

    Article  PubMed  Google Scholar 

  13. Kaluzynski K, Chen X, Emelianov SY, Skovoroda AR, O’Donnell M (2001) Strain rate imaging using two-dimensional speckle tracking. IEEE Trans Ultrason Ferroelectr Freq Control 48(4):1111–1123

    Article  CAS  PubMed  Google Scholar 

  14. Denney TS Jr, Prince JL (1995) Reconstruction of 3-D left ventricular motion from planar tagged cardiac MR images: an estimation theoretic approach. IEEE Trans Med Imaging 14:625–635

    Article  CAS  PubMed  Google Scholar 

  15. Kerwin WS, Prince JL (1998) Cardiac material markers from tagged MR images. Med Image Anal 2:339–353

    Article  CAS  PubMed  Google Scholar 

  16. Osman NF, Prince JL (2000) Visualizing myocardial function using HARP MRI. Phys Med Biol 45:1665–1682

    Article  CAS  PubMed  Google Scholar 

  17. Osman NF, McVeigh ER, Prince JL (2000) Imaging heart motion using harmonic phase MRI. IEEE Trans Med Imaging 19:186–202

  18. O’Dell WC, Moore CC, Hunter WC, Zerhouni EA, McVeigh ER (1995) Three-dimensional myocardial deformations: calculation with displacement field fitting to tagged MR images. Radiology 195:829–835

    Article  PubMed Central  PubMed  Google Scholar 

  19. Dydenko I, Friboulet D, Gorce JM, D’hooge J, Bijnens B, Magnin IE (2003) Towards ultrasound cardiac image segmentation based on the radiofrequency signal. Med Image Anal 7(3):353–367

    Article  PubMed  Google Scholar 

  20. Khalifa F, Beache GM, Gimel’farb G, Suri JS, El-Baz AS (2011) State-of-the-art medical image registration methodologies: a survey. In: El-Baz AS, Acharya UR, Laine AF, Suri JS (eds) Multi modality state-of-the-art medical image segmentation and registration methodologies. Springer, US, pp 235–280

    Chapter  Google Scholar 

  21. Liu X, Prince JL (2010) Shortest path refinement for motion estimation from tagged MR images. IEEE Trans Med Imaging 29:1560–1572

    Article  PubMed Central  PubMed  Google Scholar 

  22. Maret E, Todt T, Brudin L, Nylander E, Swahn E, Ohlsson JL, Engvall JE (2009) Functional measurements based on feature tracking of cine magnetic resonance images identify left ventricular segments with myocardial scar. Cardiovasc Ultrasound 7:53

    Article  PubMed Central  PubMed  Google Scholar 

  23. Hor KN, Gottliebson WM, Carson C, Wash E, Cnota J, Fleck R, Wansapura J, Klimeczek P, Al-Khalidi HR, Chung ES, Benson DW, Mazur W (2010) Comparison of magnetic resonance feature tracking for strain calculation with harmonic phase imaging analysis. JACC Cardiovasc Imaging 3:144–151

    Article  PubMed  Google Scholar 

  24. Hor KN, Baumann R, Pedrizzetti G, Tonti G, Gottliebson WM, Taylor M, Benson W, Mazur W (2011) Magnetic resonance derived myocardial strain assessment using feature tracking. J Vis Exp 48:2356. doi:10.3791/2356

    PubMed  Google Scholar 

  25. Schuster A, Kutty S, Padiyath A, Parish V, Gribben P, Danford DA, Makowski MR, Bigalke B, Beerbaum P, Nagel E (2011) Cardiovascular magnetic resonance myocardial feature tracking detects quantitative wall motion during dobutamine stress. J Cardiovasc Magn Reson 13:58. doi:10.1186/1532-429X-13-58

    Article  PubMed Central  PubMed  Google Scholar 

  26. Veress AI, Gullberg GT, Weiss JA (2005) Measurement of strain in the left ventricle during diastole with cine-MRI and deformable image registration. J Biomech Eng 127(7):1195–1207

    Article  PubMed  Google Scholar 

  27. Beache GM, El-Baz A, Loughran J, Slaughter MS, Bolli R (2012) Visualization of autologous adult cardiac stem cell therapy effect in human heart failure using multi-modal MRI characterization. In: Radiological society North America (RSNA) 2012 annual meeting, Chicago, IL, USA, November 25–30

  28. Khalifa F, Beache GM, Gimel’farb G, Giridharan GA, El-Baz A (2012) Accurate automatic analysis of cardiac cine images. IEEE Trans Biomed Eng 59:445–455

    Article  PubMed  Google Scholar 

  29. Gilbarg D, Trudinger NS (2001) Elliptic partial differential equations of second order. Springer, New York

    Google Scholar 

  30. John F (1982) Partial differential equations. Springer, New York

    Book  Google Scholar 

  31. Jones SE, Buchbinder BR, Aharon I (2000) Three-dimensional mapping of cortical thickness using Laplace’s equation. Hum Brain Mapp 11:12–32

    Article  CAS  PubMed  Google Scholar 

  32. Bonet J, Wood RD (1997) Nonlinear continuum mechanics for finite element analysis. Cambridge University Press, Cambridge

    Google Scholar 

  33. D’hooge J, Heimdal A, Jamal F, Kukulski T, Bijnens B, Rademakers F, Hatle L, Suetens P, Sutherland GR (2000) Regional strain and strain rate measurements by cardiac ultrasound: principles, implementation and limitations. Eur J Echocardiogr 1:154–170

    Article  PubMed  Google Scholar 

  34. Soliman A, Khalifa F, Alansary A, Gimel’farb G, El-Baz A (2013) Segmentation of lung region based on using parallel implementation of joint MGRF: validation on 3D realistic lung phantoms. In: Proceedings of the IEEE international symposium on biomedical imaging: from nano to macro (ISBI’13), San Francisco, CA, April 7–11, pp 852–855

  35. Elnakib A, Beache GM, Gimel’farb G, El-Baz A (2012) New automated Markov–Gibbs random field based framework for myocardial wall viability quantification on agent enhanced cardiac magnetic resonance images. Int J Cardiovasc Imaging 28(7):1683–1698

    Article  PubMed  Google Scholar 

  36. Sliman H, Khalifa F, Elnakib A, Soliman A, Beache GM, Elmaghraby A, El-Baz A (2013) A new segmentation-based tracking framework for extracting the left ventricle cavity from cine cardiac MRI. In: Proceedings of the IEEE international conference on image processing (ICIP’13), Melbourne, Australia, pp 685–689

  37. Sliman H, Khalifa F, Elnakib A, Soliman A, El-Baz A, Beache GM, Elmaghraby A, Gimel’farb G (2013) Myocardial borders segmentation from cine MR images using bidirectional coupled parametric deformable models. Med Phys 40(9):092302

    Article  PubMed  Google Scholar 

  38. Beache GM, Wedeen VJ, Weisskoff RM, O’Gara PT, Poncelet BP, Chesler DA, Brady TJ, Rosen BR, Dinsmore RE (1995) Intramural mechanics in hypertrophic cardiomyopathy: functional mapping with strain-rate MR imaging. Radiology 1:117–124

    Article  Google Scholar 

  39. Marchioro C, Pulvirenti M (1994) Mathematical theory of incompressible nonviscous fluids, vol 96. Springer, Berlin

    Google Scholar 

  40. Di Carli MF, Bianco-Batlles D, Landa ME, Kazmers A, Groehn H, Muzik O, Grunberger G (1999) Effects of autonomic neuropathy on coronary blood flow in patients with diabetes mellitus. Circulation 100(8):813–819

    Article  PubMed  Google Scholar 

Download references

Conflict of interest

Ahmed Elnakib, Garth Beache, Georgy Gimel’farb, and Ayman El-Baz declare that they have no conflict of interest.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ayman El-Baz.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Elnakib, A., Beache, G.M., Gimel’farb, G. et al. Intramyocardial strain estimation from cardiac cine MRI. Int J CARS 10, 1299–1312 (2015). https://doi.org/10.1007/s11548-014-1137-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11548-014-1137-2

Keywords

Navigation