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Abstract
Objectives Fibrous cap thickness is the most critical com-
ponent of plaque stability. Therefore, in vivo quantification
of cap thickness could yield valuable information for estimat-
ing the risk of plaque rupture. In the context of preoperative
planning and perioperative decision making, intracoronary
optical coherence tomography imaging can provide a very
detailed characterization of the arterial wall structure. How-
ever, visual interpretation of the images is laborious, subject
to variability, and therefore not always sufficiently reliable
for immediate decision of treatment.
Methods A novel semiautomatic segmentation method to
quantify coronary fibrous cap thickness in optical coherence
tomography is introduced. To cope with the most challeng-
ing issue when estimating cap thickness (namely the dif-
fuse appearance of the anatomical abluminal interface to be
detected), the proposed method is based on a robust dynamic
programming framework using a geometrical a priori. To
determine the optimal parameter settings, a training phase
was conducted on 10 patients.
Results Validated on a dataset of 179 images from 21
patients, the present framework could successfully extract
the fibrous cap contours. When assessing minimal cap thick-
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ness, segmentation results from the proposed method were
in good agreement with the reference tracings performed by
amedical expert (mean absolute error and standard deviation
of 22 ± 18µm, R = .73) andwere similar to inter-observer
reproducibility (21 ± 19µm, R= .74), while being signifi-
cantly faster and fully reproducible.
Conclusion The proposed framework demonstrated prom-
ising performances and could potentially be used for online
identification of high-risk plaques.

Keywords Coronary artery · Optical coherence
tomography · Interventional imaging · Thin-cap
fibroatheroma · Contour segmentation · Dynamic pro-
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Introduction

Coronary artery disease is the most common cause of human
mortality and morbidity in industrialized countries. Acute
coronary syndrome (ACS), the most severe manifestation of
atherosclerotic disease, is principally caused by acute coro-
nary thrombosis, which is mainly provoked by plaque rup-
ture [17]. The morphological characteristics of such plaques
that are prone to rupture (also dubbed “high-risk” or “vul-
nerable” plaques) are (1) a large lipid necrotic core, (2) an
overlying thin fibrous cap, and (3) dense macrophage infil-
tration (Fig. 1a) [4]. These plaques are also known as thin-
cap fibroatheromas (TCFAs) and are considered the precur-
sor phenotype of plaque rupture. The most critical compo-
nent of plaque stability is fibrous cap thickness, i.e., thin-
ner caps being more prone to rupture than thicker caps,
and the threshold of 65µm has been widely adopted to
identify high-risk lesions [11]. Accordingly, identification
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Fig. 1 Segmentation framework. a Cartoon depicting the region of
interest (ROI, dashed lines) encompassing the fibrous cap.bOCT image
of an in vivo human coronary artery, in Cartesian coordinates, with the
resulting luminal (cyan line) and abluminal (magenta line) segmenta-

tion contours. cROI in polar coordinates,with the luminal contour (cyan
line). d Gradient image IG . e Transformed cost image CT . f Cumulated
cost C, with the optimal path (magenta line). g Resulting abluminal
segmentation contour

of vulnerable plaques could potentially guide appropriate
surgical treatments such as percutaneous coronary interven-
tion (e.g., balloon angioplasty or stent placement) prior to
the occurrence of an event. Therefore, in vivo quantifica-
tion of fibrous cap thickness represents a major clinical
challenge.

Intravascular optical coherence tomography (OCT) is a
catheter-based imaging modality that enables tissues to be
visualized in vivo at a near-histology resolution (10–20µm)

and in a minimally invasive way [3]. In a similar fashion
as intravascular ultrasound, the inner circumference of the
vessel is investigated by the probe spinning along its axis
while being pulled back. At each angular step, a so-called
A-line signal is acquired via the emission and reception of
near-infrared light (center wavelength of 1280–1350nm).
A stack of consecutive cross-sectional images along the
length of the assessed artery segment is then reconstructed
by converting the intensity and echo time of all A-lines
into a gray-scale representation (Fig. 1b). The very high
spatial resolution of OCT enables an accurate character-
ization of the structure of the most superficial layers of
the arterial wall and can indicate the degree of subclini-
cal atherosclerotic lesion formation [14]. Moreover, OCT
is currently the only in vivo imaging modality with which
fibrous cap thickness, the most critical component of plaque
stability, can be assessed accurately [10]. Therefore, OCT

can potentially be used for in vivo identification of high-risk
plaques.

Although OCT images are acquired online during inter-
vention, fibrous cap thickness quantification is currently per-
formed manually offline [2,14]. The two major drawbacks
that hinder such manual image analysis are (1) the proce-
dure is cumbersome and time-consuming, and (2) results are
subject to a certain degree of variability between different
analysts [9,10]. Moreover, segmentation of the fibrous cap
abluminal interface is a challenging task, as fibroatheromas
consist of progressively unraveling tissues and are visual-
ized in OCT as signal-poor regions with diffuse contours and
high signal attenuation (Fig. 1a,b) [14]. Therefore, the clin-
ical need of immediate and reliable information is not fully
met by current procedures based on manual image analysis.

Aiming to provide reliable and quantified information
during OCT analysis in the intervention room, various
(semi)automated computerized methods have recently been
proposed. The attenuation coefficient of the backscattered
light has been used in several classification-based approaches
[12,16,20]. These methods were successfully used to iden-
tify and locate different types of tissues (i.e., healthywall sec-
tions, lipid, calcific and fibrous tissues). Nevertheless, such
techniques are not devised to provide information regard-
ing the actual delineation of anatomical interfaces and could
not be used to assess fibrous cap thickness. A seminal
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study was proposed to specifically assess fibrous cap thick-
ness [19]. This method, based on contour segmentation by
means of dynamic programming, was applied to extract both
luminal and abluminal interfaces of the fibroatheromas and
could quantify cap thickness. However, since this method
did not exploit geometrical a priori features, results could
have potentially been hindered in images with an eccentric
catheter position within the lumen. Another semiautomatic
method was introduced to identify the different tissue types
and segment thewall layers [5]. In this approach, contour seg-
mentationwas based on intensity thresholding. Nevertheless,
although the results of this study look promising, fibrous cap
thickness was not investigated per se.

The present study aims at introducing and evaluating a
framework designed to quantify fibrous cap thickness of
fibroatheromas in intracoronary OCT. The principal contri-
bution of this work is a robust contour segmentation method
devised to extract the fuzzy abluminal interface of the fibrous
cap. This novel framework is based on a dynamic program-
ming approach that previously showed successful results on
the common carotid artery wall in B-mode ultrasound [24].
The accuracy of the present method was validated in a set
of 179 cross-sectional OCT images acquired in vivo from 21
different patients and demonstrated a similar accuracy com-
pared to the tracingsmanually performed by two experienced
analysts.

Materials and methods

The present segmentation framework is based on three prin-
cipal phases, (1) a manual initialization aiming to indicate
the presence of the fibrous cap to be analyzed, (2) the auto-
matic extraction of the luminal interface in the objective to
localize the wall contour, and (3) the automatic extraction of
the abluminal interface, which is subsequently exploited to
assess the actual cap thickness. An overview of the method
is presented in Fig. 1. The outline of this section is the fol-
lowing. First, we introduce a contour segmentation scheme
based on dynamic programming, which is exploited in the
phases (2) and (3) of our framework. Then, we detail the
three principal phases of our framework.

Dynamic programming

Dynamic programming is an efficient method to find the
globally optimal solution in combinatory analysis [1]. In the
present context, contour segmentation is performed in the
polar domain. Given an image I , the anatomical interface
to be extracted corresponds to a curve running from the left
to the right border of the image, as depicted in Fig. 1c. We
thus address the issue of determining, among all the potential
candidate contours, the one that best describes the actual (1)

location and (2) shape (i.e., smoothness) of the anatomical
interface. Toward this objective, we propose a specific imple-
mentation of a dynamic programming framework based on
front propagation [6].

Cost function

Since the anatomical interfaces to be extracted are located on
regions of the image showing a strong intensity transition, the
first step consists in locally enhancing the vertical intensity
gradient of the image. One should notice that this transition
is positive for the luminal interface (i.e., from dark lumen to
bright tissues) and negative for the abluminal interface (i.e.,
from bright fibrous tissues to dark lipid pool), as depicted in
Fig. 1c,d. The gradient image IG is then built according to:

IG = ±G ′ ∗ I, (1)

with (∗) the convolution operator and G ′ the first derivative
of a Gaussian function of standard deviation σ . The ± sign
corresponds to the gradient orientation and is determined
according to the processed interface, namely it is positive for
the luminal contour and negative for the abluminal contour.
Finally, a cost function C is built such as:

C = N[0,1](−IG), (2)

with N[0,1] representing the normalization of a set of values
to the positive interval [0, 1] (viz.: the set is first linearly
scaled in such way that the minimum value becomes equal
to zero, and then the set is divided by themaximum value). In
this image C, the points most likely to represent the location
of the analyzed interface correspond to the points with the
lowest cost (Fig. 1e).

Front propagation

We now present a dynamic programming strategy to deter-
mine the path that runs in the cost image C from left-to-right
with the minimum cumulated cost C. A schematic repre-
sentation of this front propagation approach is displayed in
Fig. 2. The proposed approach extends a previously proposed
method [23,24] and takes into account both the image fea-
ture (i.e., strong intensity gradient locally corresponding to a
low cost in C) and a geometrical constraint (i.e., the shape a
priori that describes a smooth structure). Therefore, high cost
values as well as vertical displacement are penalized when
generating the cumulated cost functionC, as detailed in Eq. 3
(Fig. 1f).

C(r, θ + 1) = min
dr∈{−N ,...0,...N }

{
C(r + dr , θ) + (C(r, θ + 1)

+ C(r + dr , θ)
) · (

1 + α · dβ
r

) }
, (3)
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(a) (b)

Fig. 2 Schematic representation of the front propagation scheme, cor-
responding to the panel (f) in Fig. 1. a Original polar image, with the
pixels represented by the nodes (in this example, the layout is coarse for
improved visibility). b Left-to-right front propagation, with the current
location of the front indicated by the vertical dashed line. The current
node is indicated by an asterisk, and the connected gray nodes corre-
spond to the set of potential neighbors. In this example, the number

2N +1 of horizontally reachable neighbors is equal to 3. The black lines
connecting the nodes represent the successive backtracking steps from
a given node to the left border of the image. Please note that in the case
of segmenting the luminal interface, the nodes of the upper row corre-
spond to the top of the polar image (as shown in this example), whereas
in the case of the segmenting the abluminal interface, the nodes of the
upper row correspond to the luminal interface

with (r, θ) the vertical and horizontal coordinates, dr the
vertical displacement of the path between two consecutive
points, and 2N +1 the number of reachable neighbors. The
smoothness of the path is ruled by the positive parameters
α and β. More specifically, the overall flexibility of the path
is controlled by α (i.e., small α values enable vertical tran-
sitions of the path, and large α values favor long horizontal
plateaus), and the roughness of the path is controlled by β

(i.e., small β values yield contours that are locally spiky, and
large β values impose smooth contours).

Prior to computation, the left column ofC (i.e., θ = 1) is
initialized to zero: in this implementation, each node on the
left border acts as a seed and is a potential starting point for
the final optimal path. It is also noteworthy that the weight
of each candidate link depends on the cost of the edge con-
necting the currently evaluated node with the candidate node
(viz.: C(r, θ +1)+C(r +dr , θ) in Eq. 3), rather than the cost
of the current node alone (viz.: C(r, θ + 1)). Therefore, this
implementation is independent of the direction (i.e., left-to-
right or right-to-left) of the front propagation.

Back tracking

In the objective to extract the globally optimal path, a back-
tracking scheme is adopted. Since C is constructed using
a penalty that depends of the vertical distance between the
nodes (Eq. 3), a classical gradient descent in C cannot be
performed to extract the minimal cost path. Instead, during
the previously described propagation of the front, for each
node C(r, θ + 1), neighboring information is memorized by
storing the vertical coordinate r + dr of the best candidate

node C(r + dr, θ), as shown in Fig. 2. Once the cumulated
cost function C is entirely built, the ending point of the path
is determined by the node with the minimal cumulated cost
located on the right border of the image. Finally, the total
path is extracted via backtracking by iteratively connecting
the nodes using the stored neighboring information, from the
right to the left border of the image.

Initialization and preprocessing

The present framework starts with the user manually per-
forming a quick and simple initialization phase. For a given
pullback, this operation consists in (1) visually detecting the
presence of a necrotic core covered by a fibrous cap and
(2) manually indicating the region of interest (ROI) to be
analyzed. The ROI was defined by an arc encompassing the
fibrous cap, as displayed in Fig. 1a, b. After this operation
has been performed, the region shadowed by the guidewire
is easily masked out using an approach similar to the one
proposed in [19].

Lumen segmentation

The luminal interface is represented by a positive inten-
sity transition (i.e., from dark lumen to bright tissues) and
is generally well perceptible. The luminal contour is easily
extracted by applying the previously described dynamic pro-
gramming approach to the image I .
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Abluminal interface segmentation

The abluminal interface is represented by a negative intensity
transition (i.e., from bright fibrous tissues to dark lipid pool)
and is generally more diffuse and fuzzy. Prior to applying
the dynamic programming segmentation method, the ROI
manually selected by the user is extracted from the image
I , as depicted in Fig. 1c. Then, a spatial transformation T
is applied to the ROI. The aim of this transformation T
is to generate a sub-image CT in which the luminal inter-
face corresponds to a straight horizontal line in the polar
domain (Fig. 1e). The cost function C is thus shifted line-
by-line to match the vertical origin with respect to the lumi-
nal contour rather than to the probe location. The rationale
of our approach is based on the fact that as the fibrous cap
thickness does not undergo large variations within adjacent
sites, we can exploit a geometrical a priori to cope with
the diffuse appearance of the anatomical interface. In the
transformed sub-image CT , the abluminal contour that needs
to be extracted is henceforth expected to correspond to a
nearly horizontal structure. Subsequently, the dynamic pro-
gramming segmentation method is applied to CT . Finally,
the actual location of the abluminal interface in the original
image is determined by applying the corresponding inverse
spatial transformation T−1 onto the extracted optimal path
(Fig. 1g).

Experiments

Data collection and study population

The OCT imaging database of Thoraxenter, Erasmus MC
(Rotterdam, The Netherlands), was screened for native
coronary artery OCT pullbacks containing fibroatheromas.
Fibroatheromas were defined as necrotic core containing
regions with the maximum circumferential extent (arc)
exceeding one quadrant of the cross section. Thirty one
patients (mean age 61.3 ± 8.4 years old, 25 males) suffering
from coronary artery disease were randomly selected from
the database and included in our study. The only inclusion
criterion was the presence of fibroatheromas in the acquired
pullbacks. Informed consent was acquired from the patients
for the use of their imaging data. All procedures followed
were in accordance with the ethical standards of the respon-
sible committee on human experimentation (institutional and
national) and with the Helsinki Declaration of 1975, as
revised in 2008 (5). Pullbacks were acquired in the catheter-
ization laboratory of Erasmus MC for clinical indications,
using theC7XR frequency-domain system and theDragonfly
intracoronary imaging catheter (Lightlab/St Jude,Minneapo-
lis, MN, USA). Image acquisition was performed with a pre-
viously described non-occlusive technique [14]. Briefly, after

positioning the OCT catheter distally to the segment of inter-
est, it was pulled back automatically at 20 mm/s with simul-
taneous contrast infusion through the guiding catheter by a
power injector (flush rate 3-4 ml/s). Images were acquired at
the rate of 100 frames/s (corresponding to 54000 A-lines/s),
over an average total length of 54mmalong the vessel, result-
ing in a stack of 271 frames. The central bandwidth of the
near-infrared light was 1310nm, and the spatial resolution of
the system was 20 and 30µm in the axial and lateral direc-
tions, respectively. The depth of the scan range was 4.3 mm,
and acquired images were sampled at 504 × 968 pixels per
frame, with an isotropic pixel size of 4.5 µm.

Image analysis procedure

For each analyzed pullback, an analystA1 selected a series of
consecutive images where a necrotic core with an overlying
fibrous cap could be observed visually. Definition of image
features identifying a necrotic core was signal-poor regions
with diffuse contours and high signal attenuation [14]. Subse-
quently,A1 indicated, in each selected frame, the limits of the
ROI encompassing the fibrous cap (Fig. 1a, b). All that infor-
mation was stored and subsequently used by the automatic
segmentation method, the expertA1, as well as an additional
analyst A2 to perform, blinded to the results of others, the
extraction of the abluminal interface of the fibrous cap. All
tracings realized by the human analysts were performed in
the Cartesian domain via an effective graphical interface that
was developed in-house for this purpose. The two experts are
specialists in vascular imaging andOCT. They received iden-
tical instructions and were trained on the new segmentation
software during 1 month prior to this study.

Parameter settings

Luminal interface

Segmentation of the luminal interface does not present any
particular challenge. The proposed segmentation framework
was therefore applied on the entire circumference of all
images with the following heuristically determined parame-
ter settings: smoothness parameters, α = 0.1 and β = 1;
standard deviation of the Gaussian filter, σ = 90 µm; num-
ber of reachable neighbors, 2N + 1 = 41.

Abluminal interface

Aiming to accurately extract the abluminal contour of the
fibrous cap, the optimal parameter settings were determined
by means of a training phase. In this purpose, a training
set was generated by randomly selecting a subsample of
Ω1 = 10 pullbacks among the cohort of 31 participants. Dur-
ing the training phase, the proposed framework was repeat-
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Table 1 Values of the parameter settings used during the training phase
of the method

Parameter Number of different
values

Min Max Increment step

α 10 0.2 2.0 0.2

β 10 0.2 2.0 0.2

σ 10 9µm 90µm 9µm

edly applied to the training set, with 1000 different sets of
{α, β, σ } parameter settings, as displayed in Table 1. The
number 2N + 1 of reachable neighbors was equal to 41
to reduce the search space while still allowing the path to
follow the curvature of the analyzed interface. A score was
then attributed to each set of parameter settings, by calcu-
lating, for every frame of the training set, the mean error
between the reference abluminal contour manually traced
by A1 and the corresponding segmentation contour result-
ing from the proposed framework. Finally, the optimal set
of {α, β, σ } parameter settings was determined by visu-
ally inspecting the contours of the 10 best ranked sets and
selecting the configuration yielding the contours with the
most realistic appearance. The selected configuration was
the ninth best ranked set, with a mean absolute error of
32 ± 40 µm. The parameters corresponding to the cho-
sen set were as follows: smoothness parameters, α = 0.2
and β = 1.8; standard deviation of the Gaussian filter,
σ = 45 µm. For comparison purpose, the mean absolute
error corresponded to 31 ± 41 µm for the best ranked set
({α, β, σ } = {0.4, 1.0, 36 µm}), and to 57 ± 74 µm for the
worst ranked set ({α, β, σ } = {2.0, 2.0, 9 µm}). Moreover,
the difference between the error distributions correspond-
ing to the chosen set and the best ranked set yielded a zero
bias and a 95% confidence interval equal to [−3, 3] µm. By
defining a zone of clinical indifference equal to 9µm(i.e.,±1
pixel), we can conclude that the accuracy of the chosen set
is statistically equivalent to the accuracy of the best ranked
set. Resulting errors in function of the {α, β, σ } parameter
settings are displayed in Fig. 3.

Fibrous cap thickness evaluation

The performance of the proposed segmentation framework
was evaluated as follow: a testing set was generated with
the remaining Ω2 = 21 pullbacks, and then the segmen-
tation framework was applied onto the testing set with the
previously determined optimal parameter settings. For each
analyzed image, thickness of the fibrous cap was assessed in
the Cartesian domain, for our automatic method as well as
the two analystsA1 andA2. For a given point of the ablumi-
nal interface of the fibrous cap, the measure was performed
on the line going through the center of the lumen and the
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Fig. 3 Mean absolute segmentation error of the fibrous cap abluminal
interface, between the automatic framework and the manual tracings of
the analyst A1, in function of the parameter settings {α, β, σ }. In each
panel, the location of the minimal error is indicated by the black dot

assessed point. Cap thickness corresponded to the distance
between the two points defined by the intersection of this
line with both luminal and abluminal interfaces. For each
image, two different measurements were realized to evaluate
cap thickness, namely (i) as a vector describing each A-line
of the analyzed ROI, and (ii) as the thinnest portion within
the frame.

Manual correction of the abluminal contour

The robustness of the proposed segmentation method was
also evaluated in the training set by the expert A2 visu-
ally assessing each resulting segmentation contour of the
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Fig. 4 Representative results of the segmentation framework on eight
frames from different pullbacks. For each example, the panel composi-
tion is the following. The top row displays the full image with the region
of interest (ROI, white arc). The middle row displays an enlarged view
of the region delimited by the dashed square in the top row. The auto-
matic lumen segmentation is represented by the cyan line. Within the

ROI, tracings of the abluminal interface performed by the segmentation
method and the analysts A1 and A2 are represented by the magenta,
yellow, and green lines, respectively. The bottom row displays the cap
thickness (scale in µm), automatically computed within the ROI as
the distance between the luminal and abluminal contours that were
extracted by the segmentation method

abluminal interface and manually correcting it if neces-
sary. More precisely, one or several control points were
manually placed by A2 to correct the automatic segmen-
tation when the analyst did not agree with the original

resulting contour. The corrected segmentation contour was
generated by means of a modified implementation of the
dynamic programming method detailed in “Dynamic pro-
gramming”. Immediately after the generation of the cost
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Table 2 Absolute segmentation errors (mean ± standard deviation) of
the abluminal interface of the fibrous cap, for the automatic method
(Auto) and the two analysts (A1 and A2)

Errors (µm) Auto versus
A1

Auto versus
A2

A1 versus A2

Testing set (Ω2 = 21) 31 ± 38 37 ± 41 30 ± 39

Training set (Ω1 = 10) 31 ± 39 33 ± 33 34 ± 43

function C, a modified cost function C′ was built using
the following approach. For each manually defined con-
trol point p(θ, r), the node (θ, r) of the cost function C′
was set to zero, and all other nodes of the column θ were
set to an infinity value (Fig. 2). The following steps of the
dynamic programming method were then applied to the cost
function C′. As a consequence, the resulting contour corre-
sponded to a path going through all the control points while
still performing a search in the regions that were not cor-
rected.1

Results

Among the 31 involved patients, the average number of ana-
lyzed images per individual pullback was 8.4 ± 1.7 (range
5–10) consecutive frames, with a total of 261 analyzed
images. The average length of the analyzed arc per image
was 30 ± 16% of the entire vessel circumference (range 4–
78%). The training set was generated with Ω1 = 10 random
pullbacks (corresponding to 82 images), and the testing set
was generated from the remaining Ω2 = 21 pullbacks (cor-
responding to 179 images).

For each analyzed frame of both training and testing
sets, the luminal interface was automatically extracted for
the entire vessel circumference, and the abluminal interface
of the fibrous cap was automatically extracted within the
ROI defined by the expert A1 (Fig. 1a, b). Representative
examples of resulting segmentation contours are displayed
in Fig. 4. The results of our segmentation method, compared
to the tracings of both observers A1 and A2, are presented
alongside to the corresponding inter-observer variability in
Table 2.

Quantification of fibrous cap thickness was derived from
the segmented contours of both luminal and abluminal inter-
faces. Including each analyzed A-line per frame, the average
cap thickness was 210 ± 82 µm for the 179 images of the
testing set and 228 ± 88 µm for the 82 images of the train-
ing set. The mean minimal cap thickness (i.e., the thinnest

1 Please note that in the remaining of this manuscript, any reference
to segmentation contour and all results are related to the original auto-
matic contours (i.e., non manually corrected), except when explicitly
specified.

point in a given frame) was 126± 37 µm for the testing set,
and 161 ± 64 µm for the training set. Results of cap thick-
ness derived from the automatic framework were evaluated
against the manual references performed by the two analysts,
as presented inTable 3. TheBland-Altmanplots (Fig. 5) show
an overall good agreement between the present method and
the two experts when assessing minimal cap thickness.

It is also insightful to quantify the absolute error of the pro-
posed segmentation framework normalized by the cap thick-
ness. Calculating, for each analyzedA-line, the ratio between
the absolute segmentation error and the corresponding cap
thickness and putting all these ratios together, the mean val-
ues were 16± 19% for the 179 images of the testing set and
15 ± 22% for the 82 images of the training set. When cal-
culating the relative errors corresponding to the minimal cap
thickness, the mean values were 19±18% for the testing set
and 24 ± 31% for the training set.

Reviewing the resulting abluminal interface segmenta-
tion contours of the testing set, the expert A2 performed
a correction of the automatic contours with which he dis-
agreed, as detailed in “Manual correction of the abluminal
contour”. A total of 20 frames out of 179 were corrected,
corresponding to seven pullbacks out of 21. For all these
corrected frames, the mean number of manually added con-
trol points was 1.8 ± 1.1 (range 1–4). The two main fac-
tors motivating this manual corrections were (1) image arti-
facts hampering the automatic segmentation and (2) the pres-
enceof several interface-like structures attracting the contour.
Examples of such manual correction of erroneous contours
are depicted in Fig. 6. Assessing the fibrous cap with the
corrected contours yielded an overall reduced cap thickness
(bias of −26 µm, Bland-Altman 95% limits of agreement
of [−95, 147] µm). Comparing, for the 20 corrected frames,
the bias (and 95% limits of agreement) of the cap thick-
ness estimation resulting from the automatic segmentation
and the manually corrected segmentation, it decreased from
22µm ([−142, 187]µm) to−4µm ([−125, 117]µm)when
evaluated against the reference tracings ofA2, but increased
from 1µm ([−133, 134]µm) to−26µm ([−159, 108]µm)

with A1. This discrepancy, reflecting the subjectivity of
human analysts, is also visible through the bias between the
two experts, which was equal to 21 µm ([−124, 166] µm)

in these 20 frames.
As for the computational speed, the present framework

required on average 0.5 s to perform the contour extraction
of both luminal and abluminal interfaces and evaluate its
thickness for a single image, while the corresponding man-
ual operation required on average 190 s. In both cases and
additionally, the average time (per frame) required by the
user to define the ROI was 20 s.
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Table 3 Evaluation of fibrous
cap thickness, with absolute
error (mean ± standard
deviation), bias, 95% limits of
agreement (Lim), and Pearson
coefficient (R), for the automatic
method (Auto) and the two
analysts (A1 and A2)

Errors (µm) Overall cap thickness over the entire ROI Minimal cap thickness per frame

Absolute Bias Lim R Absolute Bias Lim R

Testing set (Ω2 = 21)

Auto versus A1 30 ± 37 1.4 [−92, 95] 0.85 22 ± 18 8.4 [−46, 63] 0.73

Auto versus A2 36 ± 41 4.9 [−101, 111] 0.81 26 ± 22 4.6 [−61, 70] 0.62

A1 versus A2 36 ± 41 3.6 [−102, 109] 0.82 21 ± 19 −3.8 [−59, 52] 0.74

Training set (Ω1 = 10)

Auto versus A1 31 ± 39 −1.4 [−99, 96] 0.86 30 ± 27 2.4 [−77, 82] 0.82

Auto versus A2 32 ± 33 −1.8 [−91, 87] 0.87 29 ± 27 2.0 [−75, 79] 0.85

A1 versus A2 35 ± 41 −0.4 [−105, 105] 0.84 24 ± 25 −0.4 [−68, 67] 0.89
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Fig. 5 Bland-Altman plots, comparing the results of minimal cap
thickness assessed in the training set, for the proposed automaticmethod
and the manual tracings performed by the two analystsA1 andA2. The

solid and dashed lines represent the bias and the 95% limits of agree-
ment, respectively

(a) (b) (c) (d)

Fig. 6 Example ofmanual contour correction, on four frames fromdif-
ferent pullbacks. The top, middle, and bottom rows display the original
image, the automatic segmentation contour of the fibrous cap (orange

line), and the corrected segmentation contour (magenta line), respec-
tively. In the bottom row, the control points thatweremanually indicated
by the analyst are represented by the black dots
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Discussion

The principal aim of this study was to introduce a contour
segmentation method devised to quantify fibrous cap thick-
ness in cross-sectional OCT images. Since cap thickness is
the most critical component of plaque stability [11], its quan-
tification is likely to provide crucial information about the
risk of plaque rupture. The proposed framework was trained
in 82 images from 10 patients and subsequently validated in
179 images from 21 other patients.

The evaluation of the proposed segmentation framework
was conducted against reference segmentation contoursman-
ually generated by two expert analysts in a set of 179 images.
Themean absolute error of the automatic method versus both
analysts (i.e., 22 ± 18 and 26 ± 22 µm) was similar to the
inter-observer variability (i.e., 21 ± 19 µm), as presented in
Table 3, which indicates that the present method performs
at least as well as an experienced observer when assessing
the cap thickness. It is also noteworthy that these errors are
relatively small compared to the spatial resolution of the sys-
tem, which was 20 µm. When assessing the thinnest por-
tion of the fibrous cap in the image, an overall low positive
bias was observed between the automatic method and the
experts (i.e., 8.4 µm w.r.t. A1, and 4.6 µm w.r.t. A2), show-
ing that cap thickness is slightly over-estimated by the com-
puterizedmethod. Furthermore, an accuracy improvement of
roughly 30% could be observedwhen quantifying, in a given
frame, the thinnest portion of the cap rather than the overall
thickness of the entire cap (i.e., 22 ± 18 vs. 30 ± 37 µm,
Table 3). This performance discrepancy can be explained by
the fact that thinnest portions tend to present sharper and
more defined contours, whereas thickest portions of the cap
often presentmore fuzzy contours (i.e., due to a greater atten-
uation of the signal in deeper tissues or to a decrease in the
lateral spatial definition along the distance from the probe in
the Cartesian domain). We consider the higher accuracy in
detection of minimal cap thickness favorable, as the minimal
value of cap thickness is the most clinically relevant infor-
mation [11]. It is also noteworthy that the ability of OCT to
quantify cap thickness was previously evaluated in a study
where cap thickness was measured manually in OCT images
and compared to the corresponding ex vivo histopathologic
segments [10]. Results from that study demonstrated a mean
signed error of −22 ± 44 µm when measuring the thinnest
portion of the cap. This magnitude can thus be understood
as the systematic uncertainty that is introduced when ana-
lyzing cap thickness in OCT images. The level of accuracy
of the proposed method can be validated by the fact that the
mean signed error is small in comparison to that uncertainty,
namely −8.4 ± 28 µm (Table 3).

A training phase was carried out on a subsample of Ω1 =
10 pullbacks to determine the optimal set of the {α, β, σ }
parameters for the extraction of the fibrous cap abluminal

interface. Despite the fact that the method was optimized
with respect to the manual tracings of the expert A1, results
show that the errors of the automaticmethod versus both ana-
lysts were close to each other as well as to the inter-observer
variability, for contour segmentation (Table 2) as well as cap
thickness assessment (Table 3). Moreover, both automatic
and manual errors generated from the training set were sim-
ilar to the errors resulting from the testing phase (Tables 2,
3), which confirms the robustness of the proposed frame-
work against new images. In a few challenging cases (i.e., 20
images out of 179), automatic segmentation of the abluminal
interface failed, due to the presence of bright image artifacts
or several interface-like structures. To cope with these issues,
a correction scheme was proposed. This task is performed
easily and quickly by the user visually assessing the result-
ing segmentation, and indicating, if necessary, one or several
control points to modify the contour, as displayed in Fig. 6.
As opposed to the abluminal contour, segmentation of the
luminal interface does not present any particular challenge,
as the location of the anatomical boundary is well perceptible
(Fig. 1b). This is testified by the fact that the parameter set-
tings used for the luminal segmentation assign less weight on
the shape constraint and more weight on the image data (i.e.,
{α, β, σ } = {0.1, 1.0, 90 µm}), compared to the abluminal
parameter settings (i.e., {α, β, σ } = {0.2, 1.8, 45 µm}).

The clinical context of our work relates to perioperative
decision making rather than patient screening: the severity
of the case is averred, and invasive imaging is required. The
rationale of the present study is to assess plaque stability
via quantifying the thickness of the overlying fibrous cap.
Indeed, it has been demonstrated that cap thickness is the
most critical component of plaque stability [11] and that
lesion morphology is associated with future events [13]. The
error introduced by the present framework when assessing
minimal cap thickness corresponded to 22 ± 18 µm. This is
relatively large compared to the threshold of 65 µm used to
identify rupture-prone sites [17]. Nevertheless, the error of
the automatic method was similar to the agreement between
the two experts, which was 21 ± 19 µm. One should also
notice that the empirical 65 µm threshold may be under-
evaluated, since ex vivo tissues can undergo variable shrink-
age rate during histological preparation [14,17]. Indeed, it
has recently been demonstrated that ruptured plaques in ACS
are often associated with a fibrous cap thickness of up to
100 µm [15] and that the best cutoff to predict rupture was
151 µm for most representative fibrous caps [21]. Accord-
ingly, the clinical applicability of the proposedmethod is sup-
ported by a relatively accurate quantificationof cap thickness.

To the best of our knowledge, the study presented byWang
et al. [19] is the only one to report a semiautomatic segmen-
tation scheme dedicated to quantify fibrous cap thickness
in coronary OCT. The accuracy of that method was slightly
better than that of the present framework, namely the mean
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absolute errors (± standard deviation) were 25 (±31) µm
versus 31 (±38) µm for the abluminal interface of the cap,
and 27 (±27) µm versus 30 (±37) µm for the overall cap
thickness. Nevertheless, the pertinence of such comparison is
limited by the fact that our method was applied onto a differ-
ent dataset, using a different OCT scanner, and that the pro-
tocol followed by the expertA1 to determine the fibrous caps
to be analyzed may also have differed. Moreover, the find-
ing of a higher inter-observer variability as well in our study
could imply the presence of challenging cases in our dataset.

A limitation of this study is that the cap thickness vali-
dation was performed against tracings manually generated
by expert analysts, but not against ex vivo histopathologic
specimens. Therefore, the actual ground truth is lacking, and
further validation iswarranted.However, as a variable shrink-
age rate often occurs during histological preparation of the
tissues [14,17], validation on ex vivo data is also expected
to involve a certain amount of uncertainty. Another limi-
tation of this study is that a manual initialization phase is
required to be performed by the user to indicate the loca-
tion of the ROI encompassing the fibrous cap to be ana-
lyzed. A certain amount of variability is to be expected in
between two selections from the same experts, or in between
the selection of two different experts, thus hindering clin-
ical applicability. This could be remedied by a more auto-
mated way of detecting these locations. Therefore, future
work will focus on fully automatic detection of such dis-
eased regions, using an approach based on machine learn-
ing [22]. One should also notice that since the spatial reso-
lution along the z-axis is rather coarse compared to the axial
resolution (i.e., 200 vs. 20µm), a three-dimensional segmen-
tation approach is not expected to greatly improve the overall
accuracy. For this reason, the proposed framework is based
on two-dimensional cross-sectional images. This issue could
be addressed in further work by upsampling the acquired
data using an ultrafast OCT system at 3200 frames per sec-
ond [18]. To cope with the diffuse appearance of the ablumi-
nal contours,multiple texture features could also be extracted
in addition to the intensity gradient in order to generate a
multi-dimensional cost function C. Future perspectives will
also aim at investigating the association of wall shear stress
with cap thickness using a fusion of imaging parameters with
OCT and biplane angiography, in the objective to assess the
risk of plaque rupture with improved performances. Poten-
tial applications could also include automated assessment of
device-induced vascular responses [7,8].

Conclusion

The context of this study is to assess rupture-prone plaques
by quantifying the thickness of the overlying fibrous cap
in cross-sectional coronary OCT imaging. A segmentation

framework devised to extract the contours of the cap was
proposed. In the objective to localize the diffuse and fuzzy
abluminal interface, the introducedmethod is based on a spe-
cific dynamic programming approach that integrates a geo-
metrical a priori. Validated on in vivo data in 21 patients
suffering from coronary artery disease, the method provided
robust and accurate results, in a clinically acceptable compu-
tational time. The automatic framework performed as well as
two expert analysts, while being substantially faster. Accord-
ingly, the proposed approach could provide a useful aid for
interventional planning and decision making in the catheter-
ization laboratory.
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