Skip to main content
Log in

3D transcranial ultrasound as a novel intra-operative imaging technique for DBS surgery: a feasibility study

  • Original Article
  • Published:
International Journal of Computer Assisted Radiology and Surgery Aims and scope Submit manuscript

Abstract

Purpose

 Intra-operative image guidance during deep brain stimulation (DBS) surgery is usually avoided due to cost and overhead of intra-operative MRI and CT acquisitions. Recently, there has been interest in the community towards the usage of non-invasive transcranial ultrasound (TCUS) through the preauricular bone window. In this work, we investigate, for the first time, the feasibility of using 3D-TCUS for imaging of already implanted DBS electrodes. As a first step towards this goal, we report imaging methods and electrode localisation errors outside of the operating room on eight previously operated DBS patients.

Methods

 We evaluate the feasibility of using 3D-TCUS by registering volumes to pre-operative T1-MRI. US-MRI registration is achieved through a two-step point-based approach. First, a rough surface scan of the subjects’ skin surface in 3D-TCUS space is registered to a segmented skin-surface point cloud from MRI. Next, we perform a refinement using rigid registration of multiple pairs of manually marked anatomical landmarks. We validate against post-operative CT scans which are also registered to pre-operative MRI.

Results

 Qualitative results are given in form of 3D reconstruction examples at 2.5 and 3.5 MHz TCUS image frequency, overlaid on pre-operative T1-MRI and post-operative CT. Quantitative evaluation is performed by reporting the accuracy of electrode tip localisation at 2.5 and 3.5 MHz after our US-MRI approach. As a baseline, we also report RMSE errors for pairs of anatomical landmarks in pre-operative MRI and 3D-TCUS.

Conclusion

 Multiple image examples show the appearance and quality of 3D-TCUS scans, depending on the bone window. Overall accuracy of anatomic point pairs lies on the order of 3.2 mm, using our registration approach. Compared to this baseline, electrode tip localisation in 3D-TCUS has a mean accuracy on the order of 4.8 mm and a precision on the order of 2.3 mm. While insufficient at first glance, we argue why these results are promising nonetheless. Our work motivates further future work in improved TCUS scanning, advanced TCUS-MRI registration and computer-aided electrode detection in 3D-TCUS.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

Notes

  1. Documentation and download under: http://www.slicer.org.

References

  1. Avants BB, Tustison NJ, Song G, Cook PA, Klein A, Gee JC (2011) A reproducible evaluation of ANTs similarity metric performance in brain image registration. Neuroimage 54(3):2033–2044

    Article  PubMed Central  PubMed  Google Scholar 

  2. Berg D, Behnke S, Seppi K, Godau J, Lerche S, Mahlknecht P, Liepelt-Scarfone I, Pausch C, Schneider N, Gaenslen A, Brockmann K, Srulijes K, Huber H, Wurster I, Stockner H, Kiechl S, Willeit J, Gasperi A, Fassbender K, Gasser T, Poewe W (2013) Enlarged hyperechogenic substantia nigra as a risk marker for Parkinson’s disease. Mov Disord 28(2):216–219

    Article  CAS  PubMed  Google Scholar 

  3. Berg D, Seppi K, Behnke S, Liepelt I, Schweitzer K, Stockner H, Wollenweber F, Gaenslen A, Mahlknecht P, Spiegel J, Godau J, Huber H, Srulijes K, Kiechl S, Bentele M, Gasperi A, Schubert T, Hiry T, Probst M, Schneider V, Klenk J, Sawires M, Willeit J, Maetzler W, Fassbender K, Gasser T, Poewe W (2011) Enlarged substantia nigra hyperechogenicity and risk for Parkinson disease: a 37-month 3-center study of 1847 older persons. Arch Neurol 68(7):932–937

    Article  PubMed  Google Scholar 

  4. Besl PJ, McKay ND (1992) A method for registration of 3-d shapes. IEEE Trans Pattern Anal Mach Intell 14(2):239–256. doi:10.1109/34.121791

    Article  Google Scholar 

  5. Bilger A, Dequidt J, Duriez C, Cotin S (2011) Biomechanical simulation of electrode migration for deep brain stimulation. Med Image Comput Comput Assist Interv (MICCAI) 14(Pt 1):339–346

    Google Scholar 

  6. De Nigris D, Collins D, Arbel T (2012) Fast and robust registration based on gradient orientations: case study matching intra-operative ultrasound to pre-operative mri in neurosurgery. In: Abolmaesumi P, Joskowicz L, Navab N, Jannin P (eds) Information processing in computer-assisted interventions. Lecture notes in computer science, vol 7330. Springer, Berlin, pp 125–134. doi:10.1007/978-3-642-30618-1_13

  7. D’Haese PF, Pallavaram S, Li R, Remple MS, Kao C, Neimat JS, Konrad PE, Dawant BM (2012) CranialVault and its CRAVE tools: a clinical computer assistance system for deep brain stimulation (DBS) therapy. Med Image Anal 16(3):744–753

    Article  PubMed Central  PubMed  Google Scholar 

  8. Fedorov A, Beichel R, Kalpathy-Cramer J, Finet J, Fillion-Robin JC, Pujol S, Bauer C, Jennings D, Fennessy F, Sonka M, Buatti J, Aylward S, Miller JV, Pieper S, Kikinis R (2012) 3D slicer as an image computing platform for the quantitative imaging network. Magn Reson Imaging 30(9):1323–1341

    Article  PubMed Central  PubMed  Google Scholar 

  9. Fuerst B, Wein W, Muller M, Navab N (2014) Automatic ultrasound-MRI registration for neurosurgery using the 2D and 3D LC(2) metric. Med Image Anal 18(8):1312–1319

    Article  PubMed  Google Scholar 

  10. Khan MF, Mewes K, Gross RE, Skrinjar O (2008) Assessment of brain shift related to deep brain stimulation surgery. Stereotact Funct Neurosurg 86(1):44–53

    Article  PubMed  Google Scholar 

  11. Lasso A, Heffter T, Rankin A, Pinter C, Ungi T, Fichtinger G (2014) PLUS: open-source toolkit for ultrasound-guided intervention systems. IEEE Trans Biomed Eng 61(10):2527–2537

    Article  PubMed  Google Scholar 

  12. Letteboer MM, Willems PW, Viergever MA, Niessen WJ (2005) Brain shift estimation in image-guided neurosurgery using 3-D ultrasound. IEEE Trans Biomed Eng 52(2):268–276

    Article  PubMed  Google Scholar 

  13. Lindsey BD, Nicoletto HA, Bennett ER, Laskowitz DT, Smith SW (2014) 3-D transcranial ultrasound imaging with bilateral phase aberration correction of multiple isoplanatic patches: a pilot human study with microbubble contrast enhancement. Ultrasound Med Biol 40(1):90–101

    Article  PubMed  Google Scholar 

  14. Plate A, Ahmadi SA, Pauly O, Klein T, Navab N, Botzel K (2012) Three-dimensional sonographic examination of the midbrain for computer-aided diagnosis of movement disorders. Ultrasound Med Biol 38(12):2041–2050

    Article  PubMed  Google Scholar 

  15. Starr PA (2002) Placement of deep brain stimulators into the subthalamic nucleus or Globus pallidus internus: technical approach. Stereotact Funct Neurosurg 79(3–4):118–145

    Article  PubMed  Google Scholar 

  16. Unsgaard G, Rygh OM, Selbekk T, Muller TB, Kolstad F, Lindseth F, Hernes TA (2006) Intra-operative 3D ultrasound in neurosurgery. Acta Neurochir (Wien) 148(3):235–253

    Article  CAS  Google Scholar 

  17. Vlaar AM, de Nijs T, van Kroonenburgh MJ, Mess WH, Winogrodzka A, Tromp SC, Weber WE (2008) The predictive value of transcranial duplex sonography for the clinical diagnosis in undiagnosed parkinsonian syndromes: comparison with SPECT scans. BMC Neurol 8:42

    Article  PubMed Central  PubMed  Google Scholar 

  18. Walter U (2010) Transcranial sonography-assisted stereotaxy and follow-up of deep brain implants in patients with movement disorders. Int Rev Neurobiol 90:274–285

    PubMed  Google Scholar 

  19. Walter U (2012) Intra- and post-operative monitoring of deep brain implants using transcranial ultrasound. Perspect Med 1(1–12), 344–348. doi:10.1016/j.permed.2012.02.012. http://www.sciencedirect.com/science/article/pii/S2211968X12000198. New trends in neurosonology and cerebral hemodynamics an update

  20. Walter U, Kirsch M, Wittstock M, Muller JU, Benecke R, Wolters A (2011) Transcranial sonographic localization of deep brain stimulation electrodes is safe, reliable and predicts clinical outcome. Ultrasound Med Biol 37(9):1382–1391

    Article  PubMed  Google Scholar 

  21. Walter U, Wolters A, Wittstock M, Benecke R, Schroeder HW, Muller JU (2009) Deep brain stimulation in dystonia: sonographic monitoring of electrode placement into the globus pallidus internus. Mov Disord 24(10):1538–1541

    Article  PubMed  Google Scholar 

Download references

Acknowledgments

This work was funded by the Lüneburg Heritage and Deutsche Forschungsgesellschaft (DFG) Grant BO 1895/4-1.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Seyed-Ahmad Ahmadi.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ahmadi, SA., Milletari, F., Navab, N. et al. 3D transcranial ultrasound as a novel intra-operative imaging technique for DBS surgery: a feasibility study. Int J CARS 10, 891–900 (2015). https://doi.org/10.1007/s11548-015-1191-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11548-015-1191-4

Keywords

Navigation