Skip to main content

Advertisement

Log in

Registration of 3D shapes under anisotropic scaling

Anisotropic-scaled iterative closest point algorithm

  • Original Article
  • Published:
International Journal of Computer Assisted Radiology and Surgery Aims and scope Submit manuscript

Abstract

Purpose

Several medical imaging modalities exhibit inherent scaling among the acquired data: The scale in an ultrasound image varies with the speed of sound and the scale of the range data used to reconstruct organ surfaces is subject to the scanner distance. In the context of surface-based registration, these scaling factors are often assumed to be isotropic, or as a known prior. Accounting for such anisotropies in scale can potentially dramatically improve registration and calibrations procedures that are essential for robust image-guided interventions.

Methods

We introduce an extension to the ordinary iterative closest point (ICP) algorithm, solving for the similarity transformation between point-sets comprising anisotropic scaling followed by rotation and translation. The proposed anisotropic-scaled ICP (ASICP) incorporate a novel use of Mahalanobis distance to establish correspondence and a new solution for the underlying registration problem. The derivation and convergence properties of ASICP are presented, and practical implementation details are discussed. Because the ASICP algorithm is independent of shape representation and feature extraction, it is generalizable for registrations involving scaling.

Results

Experimental results involving the ultrasound calibration, registration of partially overlapping range data, whole surfaces, as well as multi-modality surface data (intraoperative ultrasound to preoperative MR) show dramatic improvement in fiducial registration error.

Conclusion

We present a generalization of the ICP algorithm, solving for a similarity transform between two point-sets by means of anisotropic scales, followed by rotation and translation. Our anisotropic-scaled ICP algorithm shares many traits with the ordinary ICP, including guaranteed convergence, independence of shape representation, and general applicability.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

Notes

  1. http://graphics.stanford.edu/data/3Dscanrep.

  2. http://www.vtk.org.

References

  1. Arun KS, Huang TS, Blostein SD (1987) Least-squares fitting of two 3-d point sets. IEEE transactions on pattern analysis and machine intelligence 9(5):698–700

    Article  CAS  PubMed  Google Scholar 

  2. Balachandran R, Fitzpatrick JM (2009) Iterative solution for rigid-body point-based registration with anisotropic weighting. In: Proc. SPIE, vol 7261, p 72613D

  3. Bennani Dosse M, Ten Berge J (2010) Anisotropic orthogonal procrustes analysis. J Classif 27:111–128

    Article  Google Scholar 

  4. Bentley JL (1975) Multidimensional binary search trees used for associative searching. Commun ACM 18(9):509–517

    Article  Google Scholar 

  5. Besl PJ, McKay ND (1992) A method for registration of 3-D shapes. Pattern Anal Mach Intell IEEE Trans 14(2):239–256

    Article  Google Scholar 

  6. Burschka D, Li M, Ishii M, Taylor RH, Hager GD (2005) Scale-invariant registration of monocular endoscopic images to CT-scans for sinus surgery. Med Image Anal 9(5):413–426

    Article  PubMed  Google Scholar 

  7. Cash DM, Sinha TK, Chapman WC, Terawaki H, Dawant BM, Galloway RL, Miga MI (2003) Incorporation of a laser range scanner into image-guided liver surgery: surface acquisition, registration, and tracking. Med Phys 30(7):1671–1682

    Article  PubMed Central  PubMed  Google Scholar 

  8. Chen ECS, McLeod AJ, Jayarathne UL, Peters TM (2014) Solving for free-hand and real-time 3d ultrasound calibration with anisotropic orthogonal procrustes analysis. In: Proceedings of SPIE, vol 9036, p 90361Z

  9. Chen J, Belaton B, Pan Z (2013) A robust subset-icp method for point set registration. In: Zaman H, Robinson P, Olivier P, Shih T, Velastin S (eds) Advances in visual informatics. Lecture notes in computer science, vol 8237. Springer, Berlin, pp 59–69

    Chapter  Google Scholar 

  10. Du S, Zheng N, Xiong L, Ying S, Xue J (2010) Scaling iterative closest point algorithm for registration of m-D point sets. J Vis Commun Image Represent 21(5–6):442–452

    Article  Google Scholar 

  11. Farrell JL, Stuelpnagel JC, Wessner RH, Velman JR, Brook JE (1966) A least squares estimate of satellite attitude (grace wahba). SIAM Rev 8(3):384–386

    Article  Google Scholar 

  12. Gower JC, Dijksterhuis GB (2004) Procrustes problems. Oxford University Press, Oxford

    Book  Google Scholar 

  13. Granger S, Pennec X (2002) Multi-scale EM-ICP: a fast and robust approach for surface registration. In: European conference on computer vision (ECCV ), lecture notes in computer science vol 2353, Springer, Berlin Heidelberg, pp 418–432

  14. Greenspan M, Yurick M (2003) Approximate k-d tree search for efficient ICP. In: 3-D digital imaging and modeling, 2003. 3DIM 2003. Proceedings of fourth international conference on, pp 442–448

  15. Hansen MF, Blas MR, Larsen R (2007) Mahalanobis distance based iterative closest point. In: Proceedings of SPIE, vol 6512, p 65121Y

  16. Hartov A, Roberts DW, Paulsen KD (2008) A comparative analysis of coregistered ultrasound and magnetic resonance imaging in neurosurgery. Neurosurgery 62(3):91–101

    Article  PubMed  Google Scholar 

  17. Horn BK (1987) Closed-form solution of absolute orientation using unit quaternions. J Opt Soc Am 4:629–642

    Article  Google Scholar 

  18. Horn BK (1989) Relative orientation. Tech Rep AI Memo No. 994-A, Massachusetts Institute of Technology

  19. Jost T, Hugli H (2003) A multi-resolution ICP with heuristic closest point search for fast and robust 3D registration of range images. In: 3-D digital imaging and modeling, 2003. 3DIM 2003. Proceedings of fourth international conference on, pp 427–433

  20. Leeuw Jd, Michailidis G (2000) Optimization transfer using surrogate objective functions: discussion. J Comput Gr Stat 9(1):26–31

    Google Scholar 

  21. Ma B, Choi J, Huai HM (2014) Target registration error for rigid shape-based registration with heteroscedastic noise. In: Yaniv ZR, Holmes DR (eds), Proceedings of SPIE, vol 9036, p 90360U

  22. Ma B, Ellis RE (2003) Robust registration for computer-integrated orthopedic surgery: laboratory validation and clinical experience. Med Image Anal 7(3):237–250

    Article  CAS  PubMed  Google Scholar 

  23. Ma B, Ellis RE, Fleet DJ (1999) Spotlights: a robust method for surface-based registration in orthopedic surgery. In: Taylor CJ, Colchester AC (eds) Medical image computing and computer-assisted intervention—MICCAI’99, lecture notes in computer science, vol 1679. Springer, Berlin, Heidelberg, pp 936–945

    Google Scholar 

  24. Ma B, Moghari M, Ellis R, Abolmaesumi P (2010) Estimation of optimal fiducial target registration error in the presence of heteroscedastic noise. Med Imaging IEEE Trans 29(3):708–723

    Article  Google Scholar 

  25. Mahalanobis PC (1936) On the generalized distance in statistics. Proc Natl Inst Sci 2(1):49–55

    Google Scholar 

  26. Maier-Hein L, Franz AM, dos Santos TR, Schmidt M, Fangerau M, Meinzer HP, Fitzpatrick JM (2012) Convergent Iterative closest-point algorithm to accomodate anisotropic and inhomogeneous localization error. Pattern Anal Mach Intell IEEE Trans 34(8):1520–1532

    Article  Google Scholar 

  27. Maier-Hein L, Groch A, Bartoli A, Bodenstedt S, Boissonnat G, Chang PL, Clancy N, Elson D, Haase S, Heim E, Hornegger J, Jannin P, Kenngott H, Kilgus T, Muller-Stich B, Oladokun D, Rohl S, dos Santos T, Schlemmer HP, Seitel A, Speidel S, Wagner M, Stoyanov D (2014) Comparative validation of single-shot optical techniques for laparoscopic 3-d surface reconstruction. Med Imaging IEEE Trans 33(10):1913–1930

    Article  CAS  Google Scholar 

  28. Maier-Hein L, Mountney P, Bartoli A, Elhawary H, Elson D, Groch A, Kolb A, Rodrigues M, Sorger J, Speidel S, Stoyanov D (2013) Optical techniques for 3D surface reconstruction in computer-assisted laparoscopic surgery. Med Image Anal 17(8):974–996

    Article  CAS  PubMed  Google Scholar 

  29. Masuda T, Sakaue K, Yokoya N (1996) Registration and integration of multiple range images for 3-D model construction. In: Proceedings of 13th international conference on pattern recognition, vol 1. IEEE. pp 879–883

  30. Matei B, Meer P (1999) Optimal rigid motion estimation and performance evaluation with bootstrap. In: Computer vision and pattern recognition, 1999. IEEE computer society conference on, vol 1, pp 339–345

  31. Ohta N, Kanatani K (1998) Optimal estimation of three-dimensional rotation and reliability evaluation. In: Burkhardt H, Neumann B (eds) Computer vision—ECCV’98, lecture notes in computer science, vol 1406. Springer, Berlin Heidelberg, pp 175–187

    Google Scholar 

  32. Penney G, Edwards P, King A, Blackall J, Batchelor P, Hawkes D (2001) A stochastic iterative closest point algorithm (stochastICP). In: Niessen WJ, Viergever MA (eds) Medical image computing and computer-assisted intervention—MICCAI 2001, lecture notes in computer science, vol 2208. Springer, Berlin Heidelberg, pp 762–769

    Google Scholar 

  33. Peters TM, Cleary K (eds) (2008) Image-guided interventions: technology and applications. Springer, Berlin

    Google Scholar 

  34. Renner C, Lindner D, Schneider J, Meixensberger J (2005) Evaluation of intra-operative ultrasound imaging in brain tumor resection: a prospective study. Neurol Res 27(4):351–357

    Article  CAS  PubMed  Google Scholar 

  35. Rusinkiewicz S, Levoy M (2001) Efficient variants of the ICP algorithm. In: Proceedings third international conference on 3-D digital imaging and modeling, pp 145–152. IEEE Comput Soc

  36. Schindler K, Bischof H (2003) On robust regression in photogrammetric point clouds. In: Michaelis B, Krell G (eds) Pattern recognition, lecture notes in computer science, vol 2781. Springer, Berlin Heidelberg, pp 172–178

    Google Scholar 

  37. Schönemann P, Carroll R (1970) Fitting one matrix to another under choice of a central dilation and a rigid motion. Psychometrika 35(2):245–255

    Article  Google Scholar 

  38. Schönemann PH (1966) A generalized solution of the orthogonal procrustes problem. Psychometrika 31(1):1–10

    Article  Google Scholar 

  39. Segal AV, Haehnel D, Thrun S (2009) Generalized-icp. Proceedings of robotics: science and systems

  40. Zha H, Ikuta M, Hasegawa T (2000) Registration of range images with different scanning resolutions. In: Systems, man, and cybernetics, 2000 IEEE international conference on, vol 2, pp 1495–1500

  41. Zhang Z (1994) Iterative point matching for registration of free-form curves and surfaces. Int J Comput Vision 13(2):119–152

    Article  Google Scholar 

  42. Zinßer T, Schmidt J, Niemann H (2005) Point set registration with integrated scale estimation. In: International conference on pattern recognition and imaging processing, pp 116–119

Download references

Conflict of interest

Elvis C.S. Chen, A. Jonathan McLeod, John S.H. Baxter, and Terry M. Peters declare that they have no conflict of interest.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Elvis C. S. Chen.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chen, E.C.S., McLeod, A.J., Baxter, J.S.H. et al. Registration of 3D shapes under anisotropic scaling. Int J CARS 10, 867–878 (2015). https://doi.org/10.1007/s11548-015-1199-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11548-015-1199-9

Keywords

Navigation