Skip to main content

Advertisement

Log in

Alignment of the lower extremity mechanical axis by computer-aided design and application in total knee arthroplasty

  • Original Article
  • Published:
International Journal of Computer Assisted Radiology and Surgery Aims and scope Submit manuscript

Abstract

Purpose

The success of total knee arthroplasty (TKA) depends on many factors. The position of a prosthesis is vitally important. The purpose of the present study was to evaluate the value of a computer-aided establishing lower extremity mechanical axis in TKA using digital technology.

Methods

A total of 36 cases of patients with TKA were randomly divided into the computer-aided design of navigation template group (NT) and conventional intramedullary positioning group (CIP). Three-dimensional (3D) CT scanning images of the hip, knee, and ankle were obtained in NT group. X-ray images and CT scans were transferred into the 3D reconstruction software. A 3D bone model of the hip, knee, ankle, as well as the modified loading, was reconstructed and saved in a stereolithographic format. In the 3D reconstruction model, the mechanical axis of the lower limb was determined, and the navigational templates produced an accurate model using a rapid prototyping technique. The THA in CIP group was performed according to a routine operation. CT scans were performed postoperatively to evaluate the accuracy of the two TKA methods.

Results

The averaged operative time of the NT group procedures was \(46.8\pm 9.1\) min shorter than those of the conventional procedures (\(57.5\pm 12.3\)  min). The coronal femoral angle, coronal tibial angle, posterior tibial slope were \(89.4^{\circ }\pm 1.5^{\circ }\), \(89.3^{\circ }\pm 1.4^{\circ }\), \(6.8^{\circ }\pm 1.6^{\circ }\) in NT group and \(87.3^{\circ }\pm 3.8^{\circ }\), \(88.1^{\circ }\pm 1.9^{\circ }\), \(10.9^{\circ }\pm 4.6^{\circ }\) in CIP group, respectively. Statistically significant group differences were found.

Conclusions

The navigation template produced through mechanical axis of lower extremity may provide a relative accurate and simple method for TKA.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Tingart M, Lüring C, Bäthis H, Beckmann J, Grifka J, Perlick L (2008) Computer-assisted total knee arthroplasty versus the conventional technique: How precise is navigation in clinical routine? Knee Surg Sports Traumatol Arthrosc 16:44–50

    Article  PubMed  Google Scholar 

  2. Blakeney WG, Khan RJ, Wall SJ (2011) Computer-assisted techniques versus conventional guides for component alignment in total knee arthroplasty: a randomized controlled trial. J Bone Joint Surg Am 93:1377–1384. doi:10.2106/JBJS.I.01321

    Article  PubMed  Google Scholar 

  3. Nagamine R, Miura H, Bravo CV, Urabe K, Matsuda S, Miyanishi K, Hirata G, Iwamoto Y (2000) Anatomic variations should be considered in total knee arthroplasty. J Orthop Sci 5:232–237. doi:10.1007/s007760050157

    Article  CAS  PubMed  Google Scholar 

  4. Ritter MA, Berend ME, Meding JB, Keating EM, Faris PM, Crites BM (2001) Long-term followup of anatomic graduated components posterior cruciate-retaining total knee replacement. Clin Orthop Relat Res 388:51–57

    Article  PubMed  Google Scholar 

  5. Bäthis H, Perlick L, Tingart M, Perlick C, Lüring C, Grifka J (2005) Intraoperative cutting errors in total knee arthroplasty. Arch Orthop Trauma Surg 125:16–20. doi:10.1007/s00402-004-0759-1

    Article  PubMed  Google Scholar 

  6. Chauhan SK, Scott RG, Breidahl W, Beaver RJ (2004) Computer-assisted knee arthroplasty versus a conventional jig-based technique. A randomized, prospective trial. J Bone Joint Surg Br 86:372–377. doi:10.1302/0301-620X.86B3.14643

    Article  CAS  PubMed  Google Scholar 

  7. McPherson EJ, Patzakis MJ, Gross JE, Holtom PD, Song M, Dorr LD (1997) Infected total knee arthroplasty. Two-stage reimplantation with a gastrocnemius rotational flap. Clin Orthop Relat Res 341:73–81

    Article  PubMed  Google Scholar 

  8. Bäthis H, Perlick L, Tingart M, Lüring C, Zurakowski D, Grifka J (2004) Alignment in total knee arthroplasty. A comparison of computer-assisted surgery with the conventional technique. J Bone Joint Surg Br 86:682–687. doi:10.1302/0301-620X.86B5.14927

    Article  PubMed  Google Scholar 

  9. Matziolis G, Krocker D, Weiss U, Tohtz S, Perka C (2007) A prospective, randomized study of computer-assisted and conventional total knee arthroplasty. Three-dimensional evaluation of implant alignment and rotation. J Bone Joint Surg Am 89:236–243. doi:10.2106/JBJS.F.00386

    Article  PubMed  Google Scholar 

  10. Mizu-Uchi H, Matsuda S, Miura H, Higaki H, Okazaki K, Iwamoto Y (2009) Three-dimensional analysis of computed tomography-based navigation system for total knee arthroplasty: the accuracy of computed tomography-based navigation system. J Arthroplasty 24:1103–1110. doi:10.1016/j.arth.2008.07.007

    Article  PubMed  Google Scholar 

  11. Jeffery RS, Morris RW, Denham RA (1991) Coronal alignment after total knee replacement. J Bone Joint Surg Br 73:709–714

    CAS  PubMed  Google Scholar 

  12. Klein GR, Parvizi J, Rapuri VR, Austin MS, Hozack WJ (2004) The effect of tibial polyethylene insert design on range of motion: evaluation of in vivo knee kinematics by a computerized navigation system during total knee arthroplasty. J Arthroplasty 19:986–991

    PubMed  Google Scholar 

  13. Bach CM, Nogler M, Steingruber IE, Ogon M, Wimmer C, Göbel G, Krismer M (2002) Scoring systems in total knee arthroplasty. Clin Orthop Relat Res 399:184–196

    Article  PubMed  Google Scholar 

  14. Whiteside LA, Arima J (1995) The anteroposterior axis for femoral rotational alignment in valgus total knee arthroplasty. Clin Orthop Relat Res 321:168–172

    PubMed  Google Scholar 

  15. Stiehl JB, Cherveny PM (1996) Femoral rotational alignment using the tibial shaft axis in total knee arthroplasty. Clin Orthop Relat Res 331:47–55

    Article  PubMed  Google Scholar 

  16. Hananouchi T, Nakamura N, Kakimoto A, Yohsikawa H, Sugano N (2008) CT-based planning of a single-radius femoral component in total knee arthroplasty using the ROBODOC system. Comput Aided Surg 13:23–29. doi:10.1080/10929080701882580

    Article  PubMed  Google Scholar 

  17. Berger RA, Rubash HE, Seel MJ, Thompson WH, Crossett LS (1993) Determining the rotational alignment of the femoral component in total knee arthroplasty using the epicondylar axis. Clin Orthop Relat Res 286:40–47

    PubMed  Google Scholar 

  18. Song SJ, Jeong BO (2010) Three-dimensional analysis of the intramedullary canal axis of tibia: clinical relevance to tibia intramedullary nailing. Arch Orthop Trauma Surg 130:903–907. doi:10.1007/s00402-009-0992-8

    Article  PubMed  Google Scholar 

  19. Tang Q, Zhou Y, Yang D, Xu H, Liu Q (2010) The offset of the tibial shaft from the tibial plateau in Chinese people. J Bone Joint Surg Am 92:1981–1987. doi:10.2106/JBJS.I.00969

    Article  PubMed  Google Scholar 

  20. Nofrini L, Slomczykowski M, Iacono F, Marcacci M (2004) Evaluation of accuracy in ankle center location for tibial mechanical axis identification. J Invest Surg 17:23–29. doi:10.1080/08941930490269619

    Article  CAS  PubMed  Google Scholar 

  21. Zhang YZ, Lu S, Chen B, Zhao JM, Liu R, Pei GX (2011) Application of computer-aided design osteotomy template for treatment of cubitus varus deformity in teenagers: A pilot study. J Shoulder Elbow Surg. doi:10.1016/j.jse.2010.08.029

    Google Scholar 

  22. Zhang YZ, Lu S, Yang Y, Xu YQ, Li YB, Pei GX (2011) Design and primary application of computer-assisted, patient-specific navigational templates in metal-on-metal hip resurfacing arthroplasty. The Journal of Arthroplasty 26:1083–1089. doi:10.1016/j.arth.2010.08.004

    Article  PubMed  Google Scholar 

  23. Zhang YZ, Chen B, Lu S, Yang Y, Zhao JM, Liu R, Li YB, Pei GX (2011) Preliminary application of computer-assisted patient-specific acetabular navigational template for total hip arthroplasty in adult single development dysplasia of the hip. Int J Med Robot Comput Assist Surg 4:469–474. doi:10.1002/rcs.423

    Article  Google Scholar 

  24. Hafez MA, Chelule KL, Seedhom BB, Sherman KP (2006) Computer-assisted total knee arthroplasty using patient-specific templating. Clin Orthop Relat Res 444:184–192. doi:10.1097/01.blo.0000201148.06454.ef

    Article  CAS  PubMed  Google Scholar 

  25. Gan Y, Xu D, Lu S, Ding J (2011) Novel patient-specific navigational template for total knee arthroplasty. Comput Aided Surg 16:288–297. doi:10.3109/10929088.2011.621214

    Article  PubMed  Google Scholar 

  26. Mahaluxmivala J, Bankes MJ, Nicolai P, Aldam CH, Allen PW (2001) The effect of surgeon experience on component positioning in 673 press fit condylar posterior cruciate-sacrificing total knee arthroplasties. J Arthroplasty 16:635–640. doi:10.1054/arth.2001.23569

    Article  CAS  PubMed  Google Scholar 

  27. Jenny JY, Clemens U, Kohler S, Kiefer H, Konermann W, Miehlke RK (2005) Consistency of implantation of a total knee arthroplasty with a non-image-based navigation system: a case-control study of 235 cases compared with 235 conventionally implanted prostheses. J Arthroplasty 20:832–839. doi:10.1016/j.arth.2005.02.002

    Article  PubMed  Google Scholar 

  28. Burnett RS, Barrack RL (2013) Computer-assisted total knee arthroplasty is currently of no proven clinical benefit: a systematic review. Clin Orthop Relat Res 471:264–266. doi:10.1007/s11999-012-2528-8

    Article  PubMed  Google Scholar 

  29. Garvin KL, Barrera A, Mahoney CR, Hartman CW, Haider H (2013) Total knee arthroplasty with a computer-navigated saw: a pilot study. Clin Orthop Relat Res 471:155–161. doi:10.1007/s11999-012-2521-2

    Article  PubMed  Google Scholar 

  30. Chauhan SK, Clark GW, Lloyd S, Scott RG, Breidahl W, Sikorski JM (2004) Computer-assisted total knee replacement. A controlled cadaver study using a multi-parameter quantitative CT assessment of alignment (the Perth CT Protocol). J Bone Joint Sur Br 86:818–823. doi:10.1302/0301-620X.86B6.15456

    Article  CAS  Google Scholar 

  31. Sparmann M, Wolke B, Czupalla H, Banzer D, Zink A (2003) Positioning of total knee arthroplasty with and without navigation support. A prospective, randomised study. J Bone Joint Surg Br 85:830–835. doi:10.1302/0301-620X.85B6.13722

  32. Mihalko WM, Duquin T, Axelrod JR, Bayers-Thering M, Krackow KA (2006) Effect of one- and two pin reference anchoring systems on marker stability during total knee arthroplasty computer navigation. Comput Aided Surg 11:93–98. doi:10.3109/10929080600668122

  33. Kalairajah Y, Cossey AJ, Verrall GM, Ludbrook G, Spriggins AJ (2006) Are systemic emboli reduced in computer-assisted knee surgery? : A prospective, randomised, clinical trial. J Bone Joint Surg Br 88:198–202. doi:10.1302/0301-620X.88B2.16906

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

This work was supported by National Natural Science Foundation of China (Grant No. 81160229) and Nature Science Foundation of Inner Mongolia Autonomous Region of China (Grant No. 2014MS0851).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yuan Z. Zhang.

Ethics declarations

Conflict of interest

The authors report no declarations of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhang, Y.Z., Lu, S., Zhang, H.Q. et al. Alignment of the lower extremity mechanical axis by computer-aided design and application in total knee arthroplasty. Int J CARS 11, 1881–1890 (2016). https://doi.org/10.1007/s11548-016-1382-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11548-016-1382-7

Keywords

Navigation