Skip to main content

Advertisement

Log in

Touchless interaction with software in interventional radiology and surgery: a systematic literature review

  • Review Article
  • Published:
International Journal of Computer Assisted Radiology and Surgery Aims and scope Submit manuscript

Abstract

Purpose

In this article, we systematically examine the current state of research of systems that focus on touchless human–computer interaction in operating rooms and interventional radiology suites. We further discuss the drawbacks of current solutions and underline promising technologies for future development.

Methods

A systematic literature search of scientific papers that deal with touchless control of medical software in the immediate environment of the operation room and interventional radiology suite was performed. This includes methods for touchless gesture interaction, voice control and eye tracking.

Results

Fifty-five research papers were identified and analyzed in detail including 33 journal publications. Most of the identified literature (62 %) deals with the control of medical image viewers. The others present interaction techniques for laparoscopic assistance (13 %), telerobotic assistance and operating room control (9 % each) as well as for robotic operating room assistance and intraoperative registration (3.5 % each). Only 8 systems (14.5 %) were tested in a real clinical environment, and 7 (12.7 %) were not evaluated at all.

Conclusion

In the last 10 years, many advancements have led to robust touchless interaction approaches. However, only a few have been systematically evaluated in real operating room settings. Further research is required to cope with current limitations of touchless software interfaces in clinical environments. The main challenges for future research are the improvement and evaluation of usability and intuitiveness of touchless human–computer interaction and the full integration into productive systems as well as the reduction of necessary interaction steps and further development of hands-free interaction.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2

Similar content being viewed by others

Notes

  1. http://structure.io/openni.

  2. http://www.openni.ru/files/nite/.

  3. http://www.therapixel.com/.

  4. http://www.gestsure.com/.

  5. http://www.tedcas.com/.

  6. http://www.nztech.ca/.

  7. http://www.scopis.com/.

  8. http://www.ornet.org/?lang=en.

  9. http://deeplearning.net/software/theano/.

  10. https://www.tensorflow.org/.

  11. https://blogs.windows.com/buildingapps/2016/01/21/hololens-interaction-model/.

References

  1. Achacon DLM, Carlos DM, Puyaoan MK, Clarin CT, Naval Jr. PC (2009) Realism: real-time hand gesture interface for surgeons and medical experts. In: 9th Philippine computing science congress, Citeseer

  2. Alapetite A (2008) Speech recognition for the anaesthesia record during crisis scenarios. Int J Medi Inform 77(7):448–460

    Article  Google Scholar 

  3. Audhkhasi K, Sethy A, Ramabhadran B (2016) Semantic word embedding neural network language models for automatic speech recognition. IN: 2016 IEEE international conference on acoustics. Speech and signal processing (ICASSP), IEEE, pp 5995–5999

  4. Bane R, Höllerer T (2004) Interactive tools for virtual x-ray vision in mobile augmented reality. In: Third IEEE and ACM international symposium on mixed and augmented reality, 2004. ISMAR 2004, IEEE, pp 231–239

  5. Bauer S, Seitel A, Hofmann H, Blum T, Wasza J, Balda M, Meinzer HP, Navab N, Hornegger J, Maier-Hein L (2013) Real-time range imaging in health care: a survey. In: Grzegorzek M, Theobalt C, Koch R, Kolb A (eds) Time-of-flight and depth imaging. Sensors, algorithms, and applications. Springer, Berlin, pp 228–254. doi:10.1007/978-3-642-44964-2_11

  6. Bigdelou A, Schwarz L, Navab N (2012) An adaptive solution for intra-operative gesture-based human-machine interaction. In: Proceedings of the 2012 ACM international conference on intelligent user interfaces, ACM, pp 75–84

  7. Bizzotto N, Costanzo A, Bizzotto L, Regis D, Sandri A, Magnan B (2014) Leap motion gesture control with osirix in the operating room to control imaging first experiences during live surgery. Surg Innov 21(6):655–656

    Article  PubMed  Google Scholar 

  8. Cambria E, White B (2014) Jumping nlp curves: a review of natural language processing research [review article]. IEEE Comput Intell Mag 9(2):48–57

    Article  Google Scholar 

  9. Chan W, Jaitly N, Le Q, Vinyals O (2016) Listen, attend and spell: A neural network for large vocabulary conversational speech recognition. 2016 IEEE international conference on acoustics. Speech and signal processing (ICASSP), IEEE, pp 4960–4964

    Google Scholar 

  10. Chao C, Tan J, Castillo EM, Zawaideh M, Roberts AC, Kinney TB (2014) Comparative efficacy of new interfaces for intra-procedural imaging review: the microsoft kinect, hillcrest labs loop pointer, and the apple ipad. J Digit Imaging 27(4):463–469

    Article  PubMed  PubMed Central  Google Scholar 

  11. Clancy NT, Mylonas GP, Yang GZ, Elson DS (2011) Gaze-contingent autofocus system for robotic-assisted minimally invasive surgery. In: Engineering in medicine and biology society, EMBC, 2011 annual international conference of the IEEE, IEEE, pp 5396–5399

  12. Dahl GE, Yu D, Deng L, Acero A (2012) Context-dependent pre-trained deep neural networks for large-vocabulary speech recognition. IEEE Trans Audio Speech Lang Process 20(1):30–42

    Article  Google Scholar 

  13. Ebert L, Flach P, Thali M, Ross S (2014) Out of touch-a plugin for controlling osirix with gestures using the leap controller. J Forensic Radiol Imaging 2(3):126–128

    Article  Google Scholar 

  14. Ebert LC, Hatch G, Ampanozi G, Thali MJ, Ross S (2012) You can’t touch this touch-free navigation through radiological images. Surg Innov 19(3):301–307

    Article  PubMed  Google Scholar 

  15. El-Shallaly G, Mohammed B, Muhtaseb M, Hamouda A, Nassar A (2005) Voice recognition interfaces (vri) optimize the utilization of theatre staff and time during laparoscopic cholecystectomy. Minim Invasive Ther Allied Technol 14(6):369–371

    Article  CAS  PubMed  Google Scholar 

  16. Gallo L (2013) A study on the degrees of freedom in touchless interaction. In: SIGGRAPH Asia 2013 technical briefs, ACM, p 28

  17. Gong RH, Güler Ö, Kürklüoglu M, Lovejoy J, Yaniv Z (2013) Interactive initialization of 2d/3d rigid registration. Med Phys 40(12):121,911

  18. Graetzel C, Fong T, Grange S, Baur C (2004) A non-contact mouse for surgeon-computer interaction. Technol Health Care 12(3):245–257

    Google Scholar 

  19. Grange S, Fong T, Baur C (2004) M/oris: a medical/operating room interaction system. In: Proceedings of the 6th international conference on multimodal interfaces, ACM, pp 159–166

  20. Hartmann F, Schlaefer A (2013) Feasibility of touch-less control of operating room lights. Int J Comput Assist Radiol Surg 8(2):259–268

    Article  PubMed  Google Scholar 

  21. Herniczek SK, Lasso A, Ungi T, Fichtinger G (2014) Feasibility of a touch-free user interface for ultrasound snapshot-guided nephrostomy. Proceedings of SPIE 9036, medical imaging 2014: image-guided procedures, robotic interventions, and modeling, 90362F. doi:10.1117/12.2043564

  22. Hettig J, Mewes A, Riabikin O, Skalej M, Preim B, Hansen C (2015) Exploration of 3D medical image data for interventional radiology using myoelectric gesture control. In: Proceedings of Eurographics workshop on visual computing for biology and medicine, The Eurographics Association, pp 177–185

  23. Hinton G, Deng L, Yu D, Dahl GE, Mohamed Ar, Jaitly N, Senior A, Vanhoucke V, Nguyen P, Sainath TN (2012) Deep neural networks for acoustic modeling in speech recognition: the shared views of four research groups. IEEE Signal Process Mag 29(6):82–97

    Article  Google Scholar 

  24. Hötker AM, Pitton MB, Mildenberger P, Düber C (2013) Speech and motion control for interventional radiology: requirements and feasibility. Int J Comput Assist Radiol Surg 8(6):997–1002

    Article  PubMed  Google Scholar 

  25. Hübler A, Hansen C, Beuing O, Skalej M, Preim B (2014) Workflow analysis for interventional neuroradiology using frequent pattern mining. In: Proceedings of the annual meeting of the German Society of Computer- and Robot-Assisted Surgery, Munich, pp 165–168

  26. Neumann J, Neumuth T (2015a) Standardized semantic workflow modeling in the surgical domain–proof-of-concept analysis and evaluation for a neurosurgical use-case. IEEE, Boston, pp 6–11

    Google Scholar 

  27. Neumann J, Neumuth T (2015b) Towards a framework for standardized semantic workflow modeling and management in the surgical domain. Curr Dir Biomed Eng 1(1):172–175

    Google Scholar 

  28. Jacob MG, Wachs JP (2014) Context-based hand gesture recognition for the operating room. Pattern Recognit Lett 36:196–203

    Article  Google Scholar 

  29. Jalaliniya S, Smith J, Sousa M, Büthe L, Pederson T (2013) Touch-less interaction with medical images using hand & foot gestures. In: Proceedings of the 2013 ACM conference on Pervasive and ubiquitous computing adjunct publication, ACM, pp 1265–1274

  30. Kajastila R, Lokki T (2013) Eyes-free interaction with free-hand gestures and auditory menus. Int J Hum Comput Stud 71(5):627–640

    Article  Google Scholar 

  31. Kilgus T, Bux R, Franz A, Johnen W, Heim E, Fangerau M, Müller M, Yen K, Maier-Hein L (2016) Structure sensor for mobile markerless augmented reality. Proceedings of SPIE 9786, medical imaging 2016: image-guided procedures, robotic interventions, and modeling, 97861L. doi:10.1117/12.2216057

  32. Kipshagen T, Graw M, Tronnier V, Bonsanto M, Hofmann U (2009) Touch-and marker-free interaction with medical software. World congress on medical physics and biomedical engineering, September 7–12, 2009. Springer, Munich, pp 75–78

    Google Scholar 

  33. Kirmizibayrak C, Radeva N, Wakid M, Philbeck J, Sibert J, Hahn J (2011) Evaluation of gesture based interfaces for medical volume visualization tasks. In: Proceedings of the 10th international conference on Virtual reality continuum and its applications in industry, ACM, pp 69–74

  34. Kocev B, Ritter F, Linsen L (2014) Projector-based surgeon-computer interaction on deformable surfaces. Int J Comput Assist Radiol Surg 9(2):301–312

    Article  PubMed  Google Scholar 

  35. Li YT, Jacob M, Akingba G, Wachs JP (2013) A cyber-physical management system for delivering and monitoring surgical instruments in the or. Surg Innov 20(4):377–384

    Article  PubMed  Google Scholar 

  36. Manning CD, Surdeanu M, Bauer J, Finkel JR, Bethard S, McClosky D (2014) The stanford coreNLP natural language processing toolkit. In: Proceedings of 52nd annual meeting of the association for computational linguistics: system demonstrations, pp 55–60

  37. Mauser S, Burgert O (2014) Touch-free, gesture-based control of medical devices and software based on the leap motion controller. Stud Health Technol Inform 196:265–270

    PubMed  Google Scholar 

  38. Meng M, Fallavollita P, Habert S, Weidert S, Navab N (2016) Device-and system-independent personal touchless user interface for operating rooms. Int J Comput Assist Radiol Surg 11(6):1–9

    Google Scholar 

  39. Mentis HM, O’Hara K, Gonzalez G, Sellen A, Corish R, Criminisi A, Trivedi R, Theodore P (2015) Voice or gesture in the operating room. In: Proceedings of the 33rd annual ACM conference extended abstracts on human factors in computing systems, ACM, pp 773–780

  40. Merolla PA, Arthur JV, Alvarez-Icaza R, Cassidy AS, Sawada J, Akopyan F, Jackson BL, Imam N, Guo C, Nakamura Y, Brezzo B, Vo I, Esser SK, Rathinakumar A, Taba B, Amir A, Flickner MD, Risk WP, Monohar R, Modha DS (2014) A million spiking-neuron integrated circuit with a scalable communication network and interface. Science 345(6197):668–673

    Article  CAS  PubMed  Google Scholar 

  41. Mewes A, Saalfeld P, Riabikin O, Skalej M, Hansen C (2015) A gesture-controlled projection display for ct-guided interventions. Int J Comput Assist Radiol Surg 11(1):1–8

    Article  Google Scholar 

  42. Moher D, Liberati A, Tetzlaff J, Altman DG (2009) Preferred reporting items for systematic reviews and meta-analyses: the prisma statement. Ann Intern Med 151(4):264–269

    Article  PubMed  Google Scholar 

  43. Molchanov P, Gupta S, Kim K, Kautz J (2015) Hand gesture recognition with 3d convolutional neural networks. In: Proceedings of the IEEE conference on computer vision and pattern recognition workshops, pp 1–7

  44. Müller M, Rassweiler MC, Klein J, Seitel A, Gondan M, Baumhauer M, Teber D, Rassweiler JJ, Meinzer HP, Maier-Hein L (2013) Mobile augmented reality for computer-assisted percutaneous nephrolithotomy. Int J Comput Assist Radiol Surg 8(4):663–675

    Article  PubMed  Google Scholar 

  45. Mylonas GP, Kwok KW, Darzi A, Yang GZ (2008) Gaze-contingent motor channelling and haptic constraints for minimally invasive robotic surgery. In: Medical image computing and computer-assisted intervention—MICCAI 2008, Springer, pp 676–683

  46. Nathan CAO, Chakradeo V, Malhotra K, D’Agostino H, Patwardhan R (2006) The voice-controlled robotic assist scope holder aesop for the endoscopic approach to the sella. Skull Base 16(3):123

    Article  PubMed  PubMed Central  Google Scholar 

  47. Neverova N, Wolf C, Taylor GW, Nebout F (2014) Multi-scale deep learning for gesture detection and localization. In: Computer vision-ECCV 2014 workshops, Springer, pp 474–490

  48. Nishida N, Nakayama H (2015) Multimodal gesture recognition using multi-stream recurrent neural network. In: Pacific-rim symposium on image and video technology, Springer, pp 682–694

  49. Nishikawa A, Hosoi T, Koara K, Negoro D, Hikita A, Asano S, Kakutani H, Miyazaki F, Sekimoto M, Yasui M, Miyake Y, Takiguchi S, Monden M (2003) Face mouse: a novel human-machine interface for controlling the position of a laparoscope. IEEE Trans Robot Automa 19(5):825–841

    Article  Google Scholar 

  50. Nouei MT, Kamyad AV, Soroush AR, Ghazalbash S (2015) A comprehensive operating room information system using the kinect sensors and rfid. J Clin Monit Comput 29(2):251–261

    Article  PubMed  Google Scholar 

  51. O’Hara K, Gonzalez G, Sellen A, Penney G, Varnavas A, Mentis H, Criminisi A, Corish R, Rouncefield M, Dastur N (2014) Touchless interaction in surgery. Commun ACM 57(1):70–77

    Article  Google Scholar 

  52. Opromolla A, Volpi V, Ingrosso A, Fabri S, Rapuano C, Passalacqua D, Medaglia CM (2015) A usability study of a gesture recognition system applied during the surgical procedures. In: Marcus A (ed) Design, user experience, and usability: interactive experience design. Springer, pp 682–692. doi:10.1007/978-3-319-20889-3_63

  53. Park BJ, Jang T, Choi JW, Kim N (2016) Gesture-controlled interface for contactless control of various computer programs with a hooking-based keyboard and mouse-mapping technique in the operating room. Comput Math Methods Med 2016. doi:10.1155/2016/5170379

  54. Park Y, Kim J, Lee K (2015) Effects of auditory feedback on menu selection in hand-gesture interfaces. IEEE MultiMed 22(1):32–40

    Article  Google Scholar 

  55. Pauchot J, Di Tommaso L, Lounis A, Benassarou M, Mathieu P, Bernot D, Aubry S (2015) Leap motion gesture control with carestream software in the operating room to control imaging installation guide and discussion. Surg Innov 22:615–620

    Article  PubMed  Google Scholar 

  56. Perrakis A, Hohenberger W, Horbach T (2013) Integrated operation systems and voice recognition in minimally invasive surgery: comparison of two systems. Surg Endosc 27(2):575–579

    Article  PubMed  Google Scholar 

  57. Reilink R, De Bruin G, Franken M, Mariani M, Misra S, Stramigioli S (2010) Endoscopic camera control by head movements for thoracic surgery. In: 2010 3rd IEEE RAS and EMBS international conference on Biomedical robotics and biomechatronics (BioRob), IEEE, pp 510–515

  58. Riduwan M, Basori AH, Mohamed F (2013) Finger-based gestural interaction for exploration of 3d heart visualization. Procedia Soc Behav Sci 97:684–690

    Article  Google Scholar 

  59. Rosa GM, Elizondo ML (2014) Use of a gesture user interface as a touchless image navigation system in dental surgery: case series report. Imaging Sci Dent 44(2):155–160

    Article  PubMed  PubMed Central  Google Scholar 

  60. Ruppert GCS, Reis LO, Amorim PHJ, de Moraes TF, da Silva JVL (2012) Touchless gesture user interface for interactive image visualization in urological surgery. World J Urol 30(5):687–691

    Article  PubMed  Google Scholar 

  61. Saalfeld P, Mewes A, Luz M, Preim B, Hansen C (2015) Comparative evaluation of gesture and touch input for medical software. In: Proceedings of Mensch und computer 2015

  62. Sainath TN, Vinyals O, Senior A, Sak H (2015) Convolutional, long short-term memory, fully connected deep neural networks. In: 2015 IEEE international conference on acoustics, speech and signal processing (ICASSP), IEEE, pp 4580–4584

  63. Salama IA, Schwaitzberg SD (2005) Utility of a voice-activated system in minimally invasive surgery. J Laparoendosc Adv Surg Tech 15(5):443–446

    Article  Google Scholar 

  64. Schwarz LA, Bigdelou A, Navab N (2011) Learning gestures for customizable human-computer interaction in the operating room. In: Medical image computing and computer-assisted intervention—MICCAI 2011, Springer, pp 129–136

  65. Silva ÉS, Rodrigues MAF (2014) Design and evaluation of a gesture-controlled system for interactive manipulation of medical images and 3d models. SBC J Interact Syst 5(3):53–65

    Google Scholar 

  66. Soutschek S, Penne J, Hornegger J, Kornhuber J (2008) 3-d gesture-based scene navigation in medical imaging applications using time-of-flight cameras. In: IEEE computer society conference on computer vision and pattern recognition workshops, 2008. CVPRW’08, IEEE, pp 1–6

  67. Stoyanov D, Mylonas GP, Yang GZ (2008) Gaze-contingent 3d control for focused energy ablation in robotic assisted surgery. In: Medical image computing and computer-assisted intervention–MICCAI 2008, Springer, pp 347–355

  68. Strickland M, Tremaine J, Brigley G, Law C (2013) Using a depth-sensing infrared camera system to access and manipulate medical imaging from within the sterile operating field. Can J Surg 56(3):E1

    Article  PubMed  PubMed Central  Google Scholar 

  69. Suelze B, Agten R, Bertrand PB, Vandenryt T, Thoelen R, Vandervoort P, Grieten L (2013) Waving at the heart: Implementation of a kinect-based real-time interactive control system for viewing cineangiogram loops during cardiac catheterization procedures. In: Computing in cardiology conference (CinC), 2013, IEEE, pp 229–232

  70. Tan JH, Chao C, Zawaideh M, Roberts AC, Kinney TB (2013) Informatics in radiology: developing a touchless user interface for intraoperative image control during interventional radiology procedures. Radiographics 33(2):E61–E70

    Article  PubMed  Google Scholar 

  71. Visentini-Scarzanella M, Mylonas GP, Stoyanov D, Yang GZ (2009) i-brush: A gaze-contingent virtual paintbrush for dense 3d reconstruction in robotic assisted surgery. In: Medical image computing and computer-assisted intervention—MICCAI 2009, Springer, pp 353–360

  72. Wachs JP, Stern HI, Edan Y, Gillam M, Handler J, Feied C, Smith M (2008) A gesture-based tool for sterile browsing of radiology images. J Am Med Inform Assoc 15(3):321–323

    Article  PubMed  PubMed Central  Google Scholar 

  73. Wachs JP, Vujjeni K, Matson ET, Adams S (2010) a window on tissue-using facial orientation to control endoscopic views of tissue depth. In: 2010 annual international conference of the IEEE engineering in medicine and biology society (EMBC), IEEE, pp 935–938

  74. Walker BN, Lindsay J, Nance A, Nakano Y, Palladino DK, Dingler T, Jeon M (2013) Spearcons (speech-based earcons) improve navigation performance in advanced auditory menus. Hum Factors J Hum Factors Ergon Soc 55(1):157–182

    Article  Google Scholar 

  75. Wen R, Tay WL, Nguyen BP, Chng CB, Chui CK (2014) Hand gesture guided robot-assisted surgery based on a direct augmented reality interface. Comput Methods Programs Biomed 116(2):68–80

    Article  PubMed  Google Scholar 

  76. Wigdor D, Wixon D (2011) Brave NUI world: designing natural user interfaces for touch and gesture. Elsevier, Amsterdam

    Google Scholar 

  77. Wipfli R, Dubois-Ferrière V, Budry S, Hoffmeyer P, Lovis C (2016) Gesture-controlled image management for operating room: a randomized crossover study to compare interaction using gestures, mouse, and third person relaying. PloS One 11(4):e0153,596

  78. Yoshida S, Ito M, Tatokoro M, Yokoyama M, Ishioka J, Matsuoka Y, Numao N, Saito K, Fujii Y, Kihara K (2015) Multitask imaging monitor for surgical navigation: combination of touchless interface and head-mounted display. Urol Int. doi:10.1159/000381104

    Google Scholar 

  79. Yusoff YA, Basori AH, Mohamed F (2013) Interactive hand and arm gesture control for 2d medical image and 3d volumetric medical visualization. Procedia Soc Behav Sci 97:723–729

    Article  Google Scholar 

Download references

Acknowledgments

The work of this paper is partly funded by the Federal Ministry of Education and Research within the Forschungscampus STIMULATE under grant number 13GW0095A.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to André Mewes.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Informed consent

This article does not contain patient data.

Ethical standards

This article does not contain any studies with human participants or animals performed by any of the authors.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Mewes, A., Hensen, B., Wacker, F. et al. Touchless interaction with software in interventional radiology and surgery: a systematic literature review. Int J CARS 12, 291–305 (2017). https://doi.org/10.1007/s11548-016-1480-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11548-016-1480-6

Keywords

Navigation