Skip to main content

Advertisement

Log in

Bayesian pretest probability estimation for primary malignant bone tumors based on the Surveillance, Epidemiology and End Results Program (SEER) database

  • Original Article
  • Published:
International Journal of Computer Assisted Radiology and Surgery Aims and scope Submit manuscript

Abstract

Purpose

In the diagnostic process of primary bone tumors, patient age, tumor localization and to a lesser extent sex affect the differential diagnosis. We therefore aim to develop a pretest probability calculator for primary malignant bone tumors based on population data taking these variables into account.

Methods

We access the SEER (Surveillance, Epidemiology and End Results Program of the National Cancer Institute, 2015 release) database and analyze data of all primary malignant bone tumors diagnosed between 1973 and 2012. We record age at diagnosis, tumor localization according to the International Classification of Diseases (ICD-O-3) and sex. We take relative probability of the single tumor entity as a surrogate parameter for unadjusted pretest probability. We build a probabilistic (naïve Bayes) classifier to calculate pretest probabilities adjusted for age, tumor localization and sex.

Results

We analyze data from 12,931 patients (647 chondroblastic osteosarcomas, 3659 chondrosarcomas, 1080 chordomas, 185 dedifferentiated chondrosarcomas, 2006 Ewing’s sarcomas, 281 fibroblastic osteosarcomas, 129 fibrosarcomas, 291 fibrous malignant histiocytomas, 289 malignant giant cell tumors, 238 myxoid chondrosarcomas, 3730 osteosarcomas, 252 parosteal osteosarcomas, 144 telangiectatic osteosarcomas). We make our probability calculator accessible at http://ebm-radiology.com/bayesbone/index.html. We provide exhaustive tables for age and localization data. Results from tenfold cross-validation show that in 79.8 % of cases the pretest probability is correctly raised.

Conclusions

Our approach employs population data to calculate relative pretest probabilities for primary malignant bone tumors. The calculator is not diagnostic in nature. However, resulting probabilities might serve as an initial evaluation of probabilities of tumors on the differential diagnosis list.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Miller TT (2008) Bone tumors and tumorlike conditions: analysis with conventional radiography. Radiology 246:662–674. doi:10.1148/radiol.2463061038

    Article  PubMed  Google Scholar 

  2. Unni KK (2006) Dahlin’s bone tumors: general aspects and data on 10,165 cases. Lippincott Williams & Wilkins, Philadelphia

    Google Scholar 

  3. Mulder JD, Kroon HM, Schutte HE, Taconis WK (1993) Radiologic atlas of bone tumors, revised edn. Elsevier, Amsterdam

    Google Scholar 

  4. (2002) Rare Diseases Act of 2002, Public Law 107-280

  5. Dawson NV, Arkes HR (1987) Systematic errors in medical decision making: judgment limitations. J Gen Intern Med 2:183–187. doi:10.1007/BF02596149

    Article  CAS  PubMed  Google Scholar 

  6. Bar-Hillel M (1980) The base-rate fallacy in probability judgments. Acta Psychol (Amst) 44:211–233. doi:10.1016/0001-6918(80)90046-3

    Article  Google Scholar 

  7. Casscells W, Schoenberger A, Graboys TB (1978) Interpretation by physicians of clinical laboratory results. N Engl J Med 299:999–1001. doi:10.1056/NEJM197811022991808

    Article  CAS  PubMed  Google Scholar 

  8. Sox HC, Higgins MC, Owens DK (2013) Medical decision making. Wiley, West Sussex

    Book  Google Scholar 

  9. Lodwick GS, Haun CL, Smith WE, Keller RF, Robertson ED (1963) Computer diagnosis of primary bone tumors. Radiology 80:273–275. doi:10.1148/80.2.273

    Article  Google Scholar 

  10. Lodwick GS (1965) A probabilistic approach to the diagnosis of bone tumors. Radiol Clin North Am 3:487–497

    CAS  PubMed  Google Scholar 

  11. Kahn CE, Laur JJ, Carrera GF (2001) A Bayesian network for diagnosis of primary bone tumors. J Digit Imaging 14:56–57. doi:10.1007/BF03190296

    Article  PubMed  PubMed Central  Google Scholar 

  12. Lejbkowicz I, Wiener F, Nachtigal A, Militiannu D, Kleinhaus U, Applbaum YH (2002) Bone Browser a decision-aid for the radiological diagnosis of bone tumors. Comput Methods Programs Biomed 67:137–154. doi:10.1016/S0169-2607(01)00115-8

    Article  CAS  PubMed  Google Scholar 

  13. World Health Organization (2014) International classification of diseases for oncology. World Health Organization, Geneva

    Google Scholar 

  14. Surveillance, Epidemiology, and End Results (SEER) Program (www.seer.cancer.gov) SEER*Stat Database: Incidence—SEER 9 Regs Research Data, Nov 2014 Sub (1973–2012) Katrina/Rita Population Adjustment—Linked To County Attributes—Total U.S., 1969-2013 Counties, National Cancer Institute, DCCPS, Surveillance Research Program, Surveillance Systems Branch, released April 2015, based on the November 2014 submission

  15. Hand DJ, Yu K (2001) Idiot’s Bayes: not so stupid after all? Int Stat Rev 69:385–398. doi:10.2307/1403452

    Google Scholar 

  16. Charniak E (1991) Bayesian networks without tears. AI Mag 12:50

    Google Scholar 

  17. Liu YI, Kamaya A, Desser TS, Rubin DL (2011) A Bayesian network for differentiating benign from malignant thyroid nodules using sonographic and demographic features. Am J Roentgenol 196:W598–W605. doi:10.2214/AJR.09.4037

    Article  Google Scholar 

  18. Frank E, Bouckaert RR (2006) Naive Bayes for text classification with unbalanced classes. In: Fürnkranz J, Scheffer T, Spiliopoulou M (eds) Knowledge Discovery in Databases: PKDD 2006. Springer, Berlin, pp 503–510

    Chapter  Google Scholar 

  19. Manning CD, Schütze H (1999) Foundations of statistical natural language processing. MIT Press, Cambridge

    Google Scholar 

  20. Steyerberg E (2008) Clinical prediction models: a practical approach to development, validation, and updating. Springer, New York

    Google Scholar 

  21. Domingo P, Pazzani M (1996) Beyond independence: conditions for the optimality of the simple Bayesian classifier. In: Proceedings of the 13th international conference on machine learning, pp. 105–112

  22. Hudson T (1987) Radiologic-pathologic correlation of musculoskeletal lesions. Williams and Wilkens, Baltimore

    Google Scholar 

  23. Walden MJ, Murphey MD, Vidal JA (2008) Incidental enchondromas of the knee. Am J Roentgenol 190:1611–1615. doi:10.2214/AJR.07.2796

    Article  Google Scholar 

  24. Freyschmidt J, Ostertag H, Saure D (1981) Fibrous metaphyseal defect (fibrous cortical defect, non-ossifying fibroma). Paper II: differential diagnosis (author’s transl). RöFo Fortschritte Auf Dem Geb Röntgenstrahlen Nukl 134:392–400. doi:10.1055/s-2008-1056377

    Article  CAS  Google Scholar 

  25. Lodwick GS (1971) The bones and joints. Year Book Medical Publishers, Chicago

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Matthias Benndorf.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Ethical approval

All procedures performed in studies involving human participants were in accordance with the ethical standards of the institutional and/or national research committee and with the 1964 Helsinki Declaration and its later amendments or comparable ethical standards. For this type of study, formal consent is not required.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (pdf 58 KB)

Supplementary material 2 (pdf 57 KB)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Benndorf, M., Neubauer, J., Langer, M. et al. Bayesian pretest probability estimation for primary malignant bone tumors based on the Surveillance, Epidemiology and End Results Program (SEER) database. Int J CARS 12, 485–491 (2017). https://doi.org/10.1007/s11548-016-1491-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11548-016-1491-3

Keywords

Navigation